RexxHttp
Servlet programming in Rexx

José Maria Blasco

Version 0.1 20061101

RexxHttp: Servlet programming in Rexx
Version 0.1 20061101
Copyright (©) José Maria Blasco, 2006.

This program and the accompanying materials are made available under the terms of
the Common Public License Version 1.0.

Contents

RexxHttp
Table of contents

1 Introduction

1.1 Structure of thismanual
1.2 Contact information

Installation guide

2.1 Package contents oo

2.2 Basicinstallation
2.2.1 Install the support classes
2.2.2 Install RexxHttp.rex
2.2.3 Enable RexxHttp processing

2.3 Advanced features L
2.3.1 Passing variables o o000
2.3.2 Customize the TIMEZONE variable

2.4 Specifying page compilers 0oL

Rationale

3.1 A very skippable historical note

3.2 Designgoals L oo

3.3 Design decisions and compromises
3.3.1 Associating Rexx files with a Rexx handler in Apache
3.3.2 Passing variables L oL
3.3.3 The problem of request values.
3.3.4 Netscape-style cookies and timezones

Tutorial

4.1 Imtroduction
4.2 A “Hello, world” example
4.3 A portable "Hello, world” example
4.4 Output buffering and alternative syntax
4.5 Retrieving GET/POST arguments
4.6 Generating PDF output L oL

[\

O 00 O O UL o Ww W

11
11
12
14
14
14
16
18

ii CONTENTS

5 Class Reference 23
5.1 The Http.Cookie class 23
5.1.1 SETTIMEZONE (Class method) 23
5.1.2 TIMEZONEOFFSET (Class method) 24
51.3 INIT e 25
514 COMMENT 25
5.1.50 COMMENT= 25
5.1.6 DOMAIN e 25
5.1.7 DOMAIN= e 25
51.8 MAKESTRING 25
51.9 MAXAGE 26
51.10 MAX.AGE= 26
51.11 NAME e 26
5.1.12 PATH e 26
51.13 PATH= e 26
5.1.14 SECURE 26
5.1.15 SECURE= 27
5.1.16 VALUE 27
5.1.17 VALUE= e 27
5.1.18 VERSION o 27
5.1.19 VERSION=. 27
5.2 The Http.OutputStream class 28
52,1 INIT e 28
5.2.2 CLOSE e 29
5.2.3 FLUSH 29
52.4 OPEN 29
5.2.5 QUALIFY e 29
5.2.6 UNDERLYINGSTREAM 29
5.3 The Http.Request class 30
53.1 INIT 30
532 [o 30
5.3.3 _variable 30
534 ARG 31
53.5 AUTH.TYPE 32
5.3.6 CONTENT.LENGTH 32
5.3.7 CONTENT_.TYPE 32
538 COOKIE 33
5.3.9 DOCUMENT_ROOT 34
5.3.10 FILENAME 34
5.3.11 GATEWAY_INTERFACE 34
5312 HTTP xxxx o o i 34
5.3.13 METHOD 35
5.3.14 MODREXX i 35
5.3.15 PATHINFO 35
5.3.16 PATH.TRANSLATED 35
5.3.17 POST_STRING 35
5.3.18 QUERY_STRING 36
5.3.19 REMOTE_ADDR 36
5.3.20 REMOTE_HOST 36

5.3.21 REMOTEIDENT 36

CONTENTS iii
5.3.22 REMOTEPORT 37

5.3.23 REMOTE_USER 37

5.3.24 REQUEST-METHOD 37

5.3.25 REQUEST_POINTER 37

5.3.26 REQUEST_-URI 38

5.3.27 SCRIPT.NAME 38

5.3.28 SERVER_ADDR 38

5.3.29 SERVER_ADMIN 38

5.3.30 SERVER.NAME 39

5.3.31 SERVER_PORT 39

5.3.32 SERVER_PROTOCOL 39

5.3.33 SERVER_SIGNATURE 39

5.3.34 SERVER_.SOFTWARE 40

5.3.35 SERVLET PROCESSOR 40

5.3.36 SYSTEM_VERSION 40

5.3.37 UNKNOWN 40

5.3.38 UNPARSEDURI 41

5.3.39 URI 41

5.4 The Http.Responseclass 42
54.1 INIT 42

BA2 [42

BAZ (= o 42

54.4 ADDCOKIE 43

54.5 COMMIT e 43

54.6 COMMITTED 43

54.7 FLUSH 43

54.8 OUTPUT 44

54.9 UNKNOWN 44

6 Writing portable servlets 47
6.1 Portable input/output 47
6.2 Portable POST request processing 48
6.3 Portable request methodso 48
6.4 Portable variable passing oL 0oL 50

7 Page compiler interface 51
7.1 Page compilation interface o oL o1
Appendix A Running RexxHttp under OS/2 55
Appendix B Running RexxHttp under Microsoft 1IS 57
Appendix C Running RSPCOMP under RexxHttp 59
Appendix D Running REXXTAGS under RexxHttp 61

iv CONTENTS
Appendix E Common Public License Version 1.0 63
E.1 Definitions 63
E.2 Grant of Rights o 64
E.3 Requirements L 64
E.4 Commercial Distribution 65
E.5 No Warranty 66
E.6 Disclaimer of Liability 66

E.7

General 66

Chapter 1

Introduction

RexxHttp is a ooRexx (and Object Rexx) Servlet and Rexx Server Pages (RSP)
processor (“the servlet processor” or “the servlet engine”) that runs under CGI
and Mod_Rexx under the Apache HTTP server and can be made to run un-
der other servers using CGI (for example, Microsoft IIS). RexxHttp runs under
Windows and OS/2, and should run under any version of Unix for which there
is a corresponding implementation of ooRexx or Object Rexx and Apache.

RexxHttp can be used to develop CGI programs and Mod_Rexx programs, and
provides a convenient, uniform, object-oriented abstraction of the HTTP re-
quest/response model. RexxHttp can also be used to develop portable servlets,
that is, servlets which run unmodified under several or all platforms supporting
RexxHttp. This means that a servlet written following the portability guide-
lines! can be developed, for example, using OS/2 Object Rexx under Apache
1.3.35/Mod Rexx 1.2.0, and deployed as a CGI application under ooRexx and
Microsoft IIS 5.5 for Windows XP Professional, unchanged.?

RexxHttp automatically creates a request object which encapsulates the details
of the HTTP request, a response object to receive the HTTP response headers,
and an associated output stream where the contents of the HT'TP response will
be written. This output stream is a subclass of the builtin Stream class and
implements a buffering mechanism, thus allowing for the modification of the re-
sponse headers, as long as the response is not committed and the output stream
has not been flushed.

RexxHttp also defines a RSP compiler interface (see Page compiler interface on
page 51). Pages can be written which contain a mixture of HTML and Rexx
code, have non-HTML tags translated to Rexx function calls (like JSPs), or
whatever a compiler designer decides to implement. Current page compilers
(i.e., Mod_Rexx’s RSPCOMP and REXXTAGS) run with little modifications
under RexxHttp.

RexxHttp is Open Source, and is distributed under the Common Public License
contained in Appendix E, Common Public License Version 1.0, on page 63.

1See Writing portable servlets on page 47.
2]IS support is experimental in this release.

2 CHAPTER 1. INTRODUCTION

1.1 Structure of this manual

This manual is structured as follows: Chapter 1 is this Introduction.

Chapter 2, Installation guide, on page 3 contains detailed installation instruc-
tions for HttpRexx under Apache/CGI and Apache/Mod_Rexx, and defines the
way to pass variables to HttpRexx.

Chapter 3, Rationale, on page 11 contains a historical note and detailed exposi-
tion of the design goals, decisions and compromises that had to be made to be
able to write RexxHttp.?

Chapter 4, Tutorial, on page 19 contains a short RexxHttp tutorial. You can
use it as an introduction, to get a feeling of what can be done with RexxHttp.

Chapter 5, Class Reference, on page 23 is the reference manual for RexxHttp.
It contains complete descriptions of all the classes introduced by RexxHttp.

Chapter 6, Writing portable servlets, on page 47 details the guidelines to follow
if you want to write portable servlets.

Chapter 7, Page compiler interface, on page 51 describes a simple interface to
be used by Rexx Server Pages compiler writers so that their compilers can be
used under RexxHttp.

The Appendices include OS/2-specific infomation, preliminary information about

running RexxHttp under Microsoft IIS, information about running Rexx Server
Pages compilers under RexxHttp, and the license information.

1.2 Contact information

Email me at jose.maria.blasco@epbcn. com.

3While on the one hand I understand that I take the risk of exposing my ignorance by
writing such a chapter, on the other hand I think that hiding the productive process under
the shine of a finished product is bad practice: it discourages discussion, makes the reasons
behind the design of the product somewhat incomprehensible, and deters collaboration — and
all of those are bad things for an Open Source product.

Chapter 2

Installation guide

2.1 Package contents

Here is a short description of the package contents:

RexxHttp.rex in the directory /main is the main RexxHttp processing module.
Http.Cookie.cls in the directory /support implements the Http.Cookie class.

Http.OutputStream.cls in the directory /support implements the Http.Out-
putStream class.

Http.Request.cls in the directory /support implements the Http.Request
class.

Http.Response.cls in the directory /support implements the Http.Response
class.

All the .cls files containes in the support are referred collectively as “the
support classes’.
Http.Aux.SimpleMutableBuffer.cls in the directory /support contains a par-
tial implementation of the MutableBuffer class for OS/2 and backlevel versions
of Object Rexx.

rhrspcmp.rex and rhrxtags.rex in the directory /support are RexxHttp-
ready versions of the RSPCOMP and REXXTAGS Rexx Server Pages compilers.
See Running RSPCOMP under RexxHttp on page 59 and Running REXXTAGS
under RexxHttp on page 61 for details.

test.html in the /test directory is the sample RexxHttp test page. You can
use it to test RexxHttp features.

Other directories contain sample programs, including all the sample programs
of the Tutorial.

4 CHAPTER 2. INSTALLATION GUIDE

2.2 Basic installation

2.2.1 Install the support classes
Put

Http.Cookie.cls,
Http.OutputStream.cls,
Http.Request.cls,
Http.Response.cls and
Http.Aux.SimpleMutableBuffer.cls

somewhere in your path so that RexxHttp.rex can find the files.

2.2.2 Install RexxHttp.rex
2.2.2.1 Under CGI

Install RexxHttp.rex in a CGl-enabled directory.

2.2.2.2 Under Mod_Rexx

Install RexxHttp.rex in a directory enabled to execute .rex files as Mod_Rexx
programs (i.e., one to which the

AddType application/x-httpd-rexx-script .rex
Mod_Rexx directive applies; see your Mod_Rexx documentation for details).

Note: It might happen that you want to use RexxHttp both as a CGI and as
a Mod_Rexx application in the same server. For example, you might want to
process .html files as CGI files and .htm files as Mod_Rexx files. One possi-
ble setup would be to install two separate copies of RexxHttp.rex, one in a
CGlI-enabled directory and another one in a Mod_Rexx-enabled directory, and
associate the file extensions accordingly (see Enable RexzHitp processing, which
follows). One drawback of this method is that you end up with two copies of
RexxHttp.rex, and that may cause maintenance problems afterwards. Another,
more convenient, setup is to use the Apache Alias directive so that one single
copy of RexxHttp.rex can be accessed both as a CGI and as a Mod_Rex .rex
procedure. As an example to illustrate this possibility, suppose that your chosen
CGI directory is c:/server/cgi. To allow CGI processing, you should have a

ScriptAlias /cgi/ "c:/server/cgi/"

directive in your Apache configuration file. You can then define another alias:
Alias /scripts/ "c:/server/cgi/"

Now RexxHttp.rex can be accessed in two ways: as /cgi/RexxHttp.rex, and

as /scripts/RexxHttp.rex. If you now configure your Apache server so that
/scripts/RexxHttp.rex gets processed by Mod_Rexx (for example, using

2.2. BASIC INSTALLATION)

<Location /scripts>
AddType application/x-httpd-rexx-script .rex
</Location>

in your Apache configuration file), then one single copy of RexxHttp.rex can
be used for both CGI and Mod_Rexx processing. More details about this setup
will be found at the end of the following subsection, in Under both CGI and
Mod_Rexz on page 6.

2.2.3 Enable RexxHttp processing
2.2.3.1 Under CGI

For each directory in which you want to enable RexxHttp, add the following
Apache directives to your Apache configuration file (of course you can also en-
able RexxHttp for the whole server if you so desire):

AddHandler rexxhttp extensions
Action rexxhttp /cgipath/RexxHttp.rex

Extensions is a list of blank-separated case-insensitive extensions like .html or
.rsp (the leading dot is optional). For example,

AddHandler rexxhttp .htm .html .rsp

indicates that files with extensions .htm, .html and .rsp will be handled by
RexxHttp.

Cgipath is the complete Apache path up to and including the CGI directory.
For example, if you installed RexxHttp.rex in the standard /cgi-bin directory,
you would have

Action rexxhttp /cgi-bin/RexxHttp.rex

Note: in the two Apache directives above, rexxhttp represents the name of
the Apache handler. You can use any name you desire instead of rexxhttp, as
long as you change it consistently in the two directives.

2.2.3.2 Under Mod_Rexx

For each directory in which you want to enable RexxHttp, add the following
Apache directives to your Apache configuration file (of course you can also en-
able RexxHttp in the whole server if you so desire):

AddHandler rexxhttp ertensions
Action rexxhttp /modrexzpath/RexxHttp.rex

Ezxtensions is a list of blank-separated case-insensitive extensions like .html or
.rsp (the leading dot is optional). For example,

6 CHAPTER 2. INSTALLATION GUIDE

AddHandler rexxhttp .htm .html .rsp

indicates that files with extensions .htm, .html and .rsp will be handled by
RexxHttp.

Modrexzpath is the complete Apache path up to and including the directory
where you placed RexxHttp.rex. For example, if you installed RexxHttp.rex
in the /scripts directory, you would have

Action rexxhttp /scripts/RexxHttp.rex

Note: in the two Apache directives above, rexxhttp represents the name of the
Apache handler. You can use any name you desire instead of rexxhttp, as long
as you change it consistently in the two directives.

2.2.3.3 Under both CGI and Mod_Rexx

Assume that /cgi is a CGI directory and /scripts is a Mod_Rexx directory
(they can be aliased to the same physical directory if you like), and assume
further that both directories contain a copy of RexxHttp.rex (the same file if
the directories have been aliased). Then you could use

Action rexxhttpCGI /cgi/RexxHttp.rex
Action rexxhttpModRexx /scripts/RexxHttp.rex
AddHandler rexxhttpCGI CGl-extensions
AddHandler rexxhttpModRexx Mod_Rezz-extensions

to have files whose extension is in the list of C'Gl-extensions processed by
RexxHttp/CGI, and files whose extension is in the list of Mod_Rexx-extensions
processed by RexxHttp/Mod_Rexx.

At this point you can already test basic RexxHttp functionality. Take the
test.html test file provided with this package, install it in some RexxHttp-
enabled directory, change its extension to a valid RexxHttp extension if neces-
sary, and try it by pointing your browser to the appropriate URL. Don’t follow
the links related to cookies, because there’s no support for cookies yet (i.e.,
cookies will work, but they will have incorrect expiration dates, unless you live
in the GMT timezone with no DST). All the other tests should work.

2.3 Advanced features

2.3.1 Passing variables
2.3.1.1 Under CGI

To pass variables to RexxHttp under Apache/CGI you have to use Apache’s
SetEnv directive. Some variable names are reserved by RexxHttp (for exam-
ple, to indicate which page compilers to use) and will be described below. All
variable names should start with an underscore character ("_"), and can only

consist of alphabetic, numeric and underscore characters (Apache automatically

2.3. ADVANCED FEATURES 7

translates alphabetic characters to uppercase for environment variables). You
can also use SetEnv to set other kind of variables under Apache/CGI and ac-
cess them using the Value builtin function, but this will make your servlets
non-portable (see Writing portable servlets on 47 for more information).

Please note that SetEnv can be specified on a per-server config, per-virtual
host, per-directory, or per-.htaccess file basis. You can also use the UnsetEnv
directive to control variable passing. See your Apache documentation for details.

2.3.1.2 Under Mod_Rexx

To pass variables to RexxHttp under Apache/Mod_Rexx you have to use the
RexxSetVar directive and Apache’s LocationMatch directive in the way ex-
plained below. Some variable names are reserved by RexxHttp (for example,
to indicate which page compilers to use) and will be described below. All vari-
able names should start with an underscore character ("_"), and can only con-
sist of uppercase alphabetic, numeric and underscore characters. When using
RexxHttp under Apache/Mod_Rexx, you cannot set other types of variables,
like mixed case variables or variables that do not begin with an underscore:
even if you set them using the RexxSetVar directive, they will not be seen by
your Servlet/RSP.

Per-server configuration. Use the RexxSetVar directive to define a special Rexx
variable called REXXVARS, which will contain the names of all the variables
passed to the Rexx servlet. The special names - TIMEZONE, _FNAMETEMPLATE,
_RSPCOMPILERS, _RSPCOMPILER_n and _RSPCOMPILER_n_TYPES are automati-
cally handled by RexxHttp and do not have to be specified manually.

The variables should be specified as follows:

RexxSetVar REXXVARS VAR VAR2 ...
RexxSetVar _VARI wvalue
RexxSetVar _VAR2 value

Example:

RexxSetVar REXXVARS "CITIES COLOR"
RexxSetVar _CITIES "Barcelona Ibiza"
RexxSetVar _COLOR "Blue"

RexxSetVar _TIMEZONE "-03:00 00:00"

Per-directory configuration. Variables can be specified on a per-directory basis
using the LocationMatch directive in the following way:

<LocationMatch "~ /rexxhttpdir/RexxHttp.rex/dirx">
RexxSetVar REXXVARS VARI VAR2 ...
RexxSetVar _VARI value
RexxSetVar _VAR2 value

8 CHAPTER 2. INSTALLATION GUIDE

</LocationMatch>

Rexzhttpdir is the complete Apache path to the location where RexxHttp.rex
is installed. Dir is the directory where you want to assign variables to.

Example: If RexxHttp.rex is installed in the /scripts directory and you want
to assign variables to the /some/dir directory, you would use

<LocationMatch "“/scripts/RexxHttp.rex/some/dir*">
RexxSetVar REXXVARS "CITIES COLOR"
RexxSetVar _CITIES "Barcelona Ibiza"
RexxSetVar _COLOR "BLUE"
RexxSetVar _TIMEZONE "-03:00 00:00"
</LocationMatch>

2.3.2 Customize the _TIMEZONE variable

To use Netscape-style cookies, RexxHttp needs a properly configured _TIMEZONE
variable. The format of the _TIMEZONE variable is the following:

base dst [hourl weekdayl posl monthl hour2 weekdayl posl monthl]

See SETTIMEZONE (Class method) on page 23 for more details.

2.4 Specifying page compilers

RexxHttp can process files as Rexx Servlets, or use one or more Rexx Server
Pages (RSP) compilers to compile RSP pages into Rexx Servlets and then call
the compiled Servlet. By default, all extensions specified in the AddHandler
directive are invoked as Rexx Servlets. To specify page compilers, you have to
set a number of _RSPCOMPILER XX XX variables and a _FNAMETEMPLATE variable
by using the mechanism described in the section relevant to your setup. Please
note that you can change the number, nature, extension association and order
of the compilers on a per-directory basis. See Page compiler interface on page
51 for more details.

_FNAMETEMPLATE is a template used to create a temporary file for the compila-
tion phase. The value of this variable will be used to generate a temporary file
name that will be passed to the page compiler. The page compiler may choose
to use this file name for the compilation output, or use some other mechanism.
Once the compilation phase is finished, the compiler will return indicating to
RexxHttp whether there was some compilation error or whether compilation
was successful, in which case it will return the name of the compiled file, which
can be the temporary file, recently created, or another file (probably a cached
file). RexxHttp then calls the appropiate file, and, if the temporary file was
created, erases it. See Page compiler interface on page 51 for more details.

_RSPCOMPILERS should be set to a positive whole number that indicates the
number of RSP compilers to use. If that number is n, for each positive whole

2.4. SPECIFYING PAGE COMPILERS 9

number 7 between 1 and n you have to set two more variables:
_RSPCOMPILER_j is the fully qualified path and file name to a RSP compiler.

_RSPCOMPILER_i_TYPES is the blank-separated list of case-insensitive file exten-
sions to associate with the i-th page compiler. A single dot (".") indicates all
files with no extension; in all other cases, the leading dot is optional.

Example (for Apache/CGI):

setenv _rspcompilers 2

setenv _rspcompiler_1 "c:\compilers\rspcomp.rex"
setenv _rspcompiler_1_types "rsp"

setenv _rspcompiler_2 "c:\compilers\rxtagsil.rex"
setenv _rspcompiler_2_types "rxt"

setenv _fnametemplate "c:\temp\RSP?77.REX"

Indicates that there are two RSP compilers: RSPCOMP is associated to *.rsp
files, and RXTAGSI1 to .rxt files. The temporary file name template is set to
"c:\temp\RSP777.REX"

10

CHAPTER 2. INSTALLATION GUIDE

Chapter 3

Rationale

This chapter explains why RexxHttp was written, how it was written, and why
it was written the way it was written. If you are not interested in systems
development, you can safely skip to the next chapter.

3.1 A very skippable historical note

One day I needed to write a CGI, so that I googled for “Rexx CGI”. To my
surprise, I got very few results, and they were all quite old: Les Cottrell’s ex-
cellent Guide to Writing CGI Scripts in REXX and Perl (http://wuw.slac.
stanford.edu/slac/www/resource/how-to-use/cgi-rexx/) is dated July 24,
1998; and Writing CGI Scripts in REXX (http://wuw.webtechniques.com/
archives/1996/05/rexx/), by the same author, is dated May 1996. There’s
little more in the first results page (apart from an IBM page telling us to use
Mod_Rexx instead, but no, thanks, I'm already using Mod_Rexx, but this time
I really needed a CGI).

In particular, there was nothing about Object Rexx (or ooRexx) and CGI. How
could this be? It’s very easy, at least in principle, to write a nice object-oriented
wrapper for the CGI specification! So that I decided to write one and make it
public, so that others might benefit.

The first part was easy, even if a little tedious: I had to study the aging CGI
specification (http://hoohoo.ncsa.uiuc.edu/cgi/) and implement wrappers
for the HTTP request and response. Everything was quite straightforward, ex-
cept maybe for the design of the ARG and COOKIE request methods, which I tried
to keep as Rexx-like as possible. To handle the response contents, I decided to
implement a subclass of Stream that would buffer its output in a MutableBuffer,
so that the response could be updated at will before the contents had not been
flushed; this would also have the benefit of offering increased performance.

Once I had a working prototype, I realized that I had something more than
an assistant to write CGls: this could be the core of a complete Rexx servlet
system! Then an idea came to my mind: could the same system be made to run
under Mod_Rexx? This would be really useful: it would allow to design portable

11

http://www.slac.stanford.edu/slac/www/resource/how-to-use/cgi-rexx/
http://www.slac.stanford.edu/slac/www/resource/how-to-use/cgi-rexx/
http://www.webtechniques.com/archives/1996/05/rexx/
http://www.webtechniques.com/archives/1996/05/rexx/
http://hoohoo.ncsa.uiuc.edu/cgi/

12 CHAPTER 3. RATIONALE

servlets, while still getting all the benefits of Mod_Rexx or CGI if so desired. So
that I put myself to work, and, voild, in some hours I had a dual-pathed sys-
tem that could run unchanged under Mod_Rexx and CGI. (See Writing portable
servlets on page 47.)

As I intended to make the program public, I wanted to test it thoroughly be-
fore releasing it. I was using a notebook loaded with Apache 1.3.35/CGI and
Apache 2.0.58/Mod_Rexx 2.1.0 for development and testing. T don’t have access
to any Unix variant, but I hoped that somebody would be kind enough to do
the testing for me. Then I thought about the poor OS/2 users; I myself use
WSEB 4.52/Apache 1.3.33/Mod_Rexx 1.2.0/Classic Rexx in my main servers,
but I'm being slowly forced to migrate due to lack of support and development.
I didn’t have a working WSEB/Object Rexx system to conduct OS/2 testing (I
cannot SWITCHRX my production systems: this makes them unstable when
accesing DB2), so that T bought a copy of Parallels Workstation, installed a
virtual WSEB 4.52, SWITCHRXed it, and tried RexxHttp under Apache 2.0.
Then I realized that OS/2’s Object Rexx is backlevel, and does not offer a Mu-
tableBuffer class — so that I decided to write a poor man’s implementation of
MutableBuffer, only enough of it so that RexxHttp can run.!

At this point I was quite excited. Could RexxHttp be made to run under some
HTTP server other than Apache? After all, the CGI implementation is server-
neutral. Then I realized that some of my Windows XP Professional systems
included a working Microsoft IIS 5.5 server: I made some tests (I had no pre-
vious experience with IIS), and after some tweaking I got RexxHttp working.
I though: if T could get the system working under the more popular servers,
and since RexxHttp allows the development of portable servlets, a pool of OS-
independent, server-independent, and gateway interface-independent servlets
could be created, so that all (Object and oo-)Rexx users could share them.

Finally I asked myself if the current Mod_Rexx page compilers, i.e., RSPCOMP
and REXXTAGS, could be run under RexxHttp: well, with a little tweaking
they run flawlessly! So that I thought in more general terms and I designed a
very simple compiler-neutral interface so that new compilers can be written and
installed as plugins. (See Page compiler interface on page 51.)

That’s how RexxHttp was created. The following section lists the design goals
as a whole, as if all the ideas came to my mind at once.

3.2 Design goals

Design an Open Source Servlet System that uses the expresive power of ooRexx
to encapsulate the complexity of the HTTP request/response model in simple
to use and well documented classes that can be used as a standard. Ideally,
the servlet system should be written in pure ooRexx and provide defaults in
such a manner that in standard cases configuration can be kept to a minimum
and deployment time nears zero. All the differences between HTTP servers,
underlying gateway interfaces and operating systems should be handled by the

10f course some backlevel versions of Object Rexx also lack Mutablebuffer.

3.2. DESIGN GOALS 13

servlet system, in such a way that a single source distribution can accomodate
the corresponding variations between systems and implementations.

The servlet system should run under all versions of Apache, and should be able
to be extended to run under other HTTP servers (for example, Microsoft IIS).
The system should support the possibility of writing servlets that are indepen-
dent of the underlying HTTP server.

The servlet system should run under CGI and under Mod_Rexx. Servlets that
run under Mod_Rexx enjoy the advantages of speed and scalability under heavy
loads that Mod_Rexx provides. Servlets that run under CGI are useful in cases
where there is no corresponding Mod_Rexx implementation (for example, when
you want to use a version of Apache for which there is no Mod_Rexx support,
or if you are forced to use a server which is not Apache), and in cases where you
need to use features that Mod_Rexx does not have (for example, executing sys-
tem commands, or writing to the standard output stream using methods other
than the SAY instruction).

The servlet system should run under Windows, all versions of Unix for which
there is a corresponding Apache implementation, and under other operating
systems. Special care should be taken so that the system runs under OS/2, if
at all possible.

The servlet system should provide a way to write servlets that are portable with-
out modification between all the underlying gateway interfaces (i.e., Mod_Rexx
and CGI), operating systems, and HTTP servers. This is specially important
for the Mod_Rexx/CGI dichotomy. Imagine the following situation: you man-
age a server in which part or all of the pages are Rexx Servlets and runs under
Mod_Rexx. Then a new Apache version appears. You want to use this new
version of Apache for whatever reason, but a Mod_Rexx implementation for
this new version of Apache does not (yet) exist. If your servlets are written
following the compatibility guidelines,? you can simply migrate to the new ver-
sion of Apache (if you are willing to pay the price in performance degradation)
and still run all your servlets unchanged. Once the new version of Mod_Rexx
appears, you can switch back to Mod_Rexx and enjoy its enhanced performance
and scalability. Notice that for personal webs and small businesses (i.e., a big
percentage of the web) the performance of CGI is quite acceptable: one can
easily get 20 servlet pages per second under CGI in a standard laptop loaded
with several other programs, which is more than enough for a small web.

The servlet system should be able to run existing Rexx Server Pages compil-
ers (i.e., Mod_Rexx RSPCOMP, and REXXTAGS) with minimal modification,
and should provide a foundation for more sophisticated compilers that might
be written in the future. Existing RSP pages should also be adaptable to run
as servlets with minimal or no modification.

The servlet system should allow the simultaneous execution of rexx servlets and
RSP pages, calling different page compilers based on the filetype. For example,

2See Writing portable servlets on page 47.

14 CHAPTER 3. RATIONALE

you could have .rex files automatically called as servlets, .rsp files be compiled
with RSPCOMP, and .html files be compiled with REXXTAGS, all under the
same directory.

3.3 Design decisions and compromises

3.3.1 Associating Rexx files with a Rexx handler in Apache

Apache’s Action directive allows to define an action associated to a CGI script
or a Mod_Rexx script:

Action rexxhttp /cgi-bin/RexxHttp.rex

will associate the rexxhttp action with the RexxHttp.rex CGI script (assum-
ing that, as usual, /cgi-bin/ has been ScriptAliased), while

Action rexxhttp /scripts/RexxHttp.rex

will associate the rexxhttp action with the RexxHttp.rex Mod_Rexx script
(assuming that the /script/ directory allows the execution of Mod_Rexx .rex
programs).

Now we will use Apache’s AddHandler directive to associate our newly defined
handler with a set of extensions:

AddHandler httprexx .htm .html .rsp

maps the .htm, .html and .rsp extensions to rexxhttp.

This provides a uniform approach to both CGI and Mod_Rexx. When running
under Mod_Rexx, the overhead is the overhead caused by RexxHttp itself, which
should not be much bigger than the overhead of using Apache.cls; under CGI,
the little overhead of setting up the RexxHttp classes is vastly compensated by
advantages of RexxHttp: having a uniform interface, clear error handling, etc..

3.3.2 Passing variables

Apache CGI environment variables are limited to letters, numbers and the
underscore character; the first character cannot be a number. Mod_Rexx’s
RexxSetVar variables are more flexible in their syntax (for example, they allow
dots to form stem-like variables). Although it is possible to define mixed-case
CGI variables (case is significant under CGI), all standard CGI variables are
passed in uppercase.

3.3. DESIGN DECISIONS AND COMPROMISES 15

On the other hand, it is very convenient to access passed variables in a directory-
like manner:

request passedvariable

(in addition to the request["passedvariable"] syntax), but then a passed
variable could have the same name as a Http.Request method (or a new method
defined in the future). That’s why the decision was made to be still more re-
strictive than CGI: all RexxHttp variables have to begin with an underscore,
and use only uppercase letters, numbers, and underscores.

Under CGI, you can always call the VALUE builtin function if you need to access
a variable that does not conform to these rules. Under Mod_Rexx the situation
is different: although you can set as many variables as you want by using the
RexxSetVar directive, these variables are only visible to the main program,?
i.e., they revert to their default values as soon as a procedure is called. But us-
ing RexxHttp means that servlets should be called as external procedures from
RexxHttp itself, and therefore they will not have access to the RexxSetVar vari-
ables. That’s why the (admittedly ugly) decision to define a REXXVARS variable
was taken: you define

RexxSetVar REXXVARS "varl ... varn"

where varl, ..., varn are variable names, and you are supposed to define each of
_varl, ..., _varn later (note the underscores). For example,

RexxSetVar REXXVARS "COLOR CITIES"
RexxSetVar _COLOR BLUE
RexxSetVar _CITIES "Barcelona Ibiza"

RexxHttp then fetches the REXXVARS variable, parses it, fetches each _vari vari-
able, and stores everything in a directory so that it can be accessed later.

Since some variables are defined by RexxHttp itself (i.e., -TIMEZONE, all the
_RSPCOMPILERzzzx variables, and _FNAMETEMPLATE), RexxHttp automatically
appends these variables to RexxVars when running under Mod_Rexx.

Under Apache/CGI, variables can be set by using the SetEnv and related di-
rectives. Apache treats the Action/SetHandler combination as a redirection,
and passes the per-directory (or Location, etc.) variables in a new set of
REDIRECT_zzzz variables. HttpRexx takes care of that under Apache/CGI:
if a request for a previously unfetched variable _var is made, first an attempt is
made to fetch REDIRECT__var using VALUE, and, only if this fails (i.e., the null

3This was not so for Mod_Rexx 1.2.0 under OS/2. Was this an OS/2 feature?

16 CHAPTER 3. RATIONALE

string is returned) an attempt is made to fetch _var. In any case, the result is
cached so that as little calls to VALUE as possible are made.

Under Apache/Mod_Rexx, per-server variables are passed without problems,
but per-directory variables are not passed (i.e., you cannot expect to RexxSetVar
a variable V for directory /test, then request /test/sample.rex, and get V
passed to sample.rex, because Mod_Rexx thinks that RexxHttp.rex is being
called instead). To overcome this problem, you can use the following procedure:
assume that RexxHttp.rex is installed in directory /scripts; when requesting
a file in directory /test, Apache will call RexxHttp.rex, but with a composite
URL of

/scripts/RexxHttp.rex/test/file

and this allows us to use the LocationMatch Apache directive to set the vari-
ables:

<LocationMatch "“/scripts/RexxHttp.rex/test/*">
RexxSetVar REXXVARS "COLOR"
RexxSetVar _COLOR "CYAN"

</LocationMatch>

Admittedly, this is not very elegant, but it works as intended.*

3.3.3 The problem of request values

CGI defines a set of environment variables to pass information about the re-
quest to the CGI program. Mod_Rexx defines a set of WWWzzzz variables which
provide similar information to the Mod_Rexx program. A Rexx servlet should
expect to receive a set of values, accesible using the request object’ methods.
But here we have two problems: 1) the information passed to both CGI and
Mod_Rexx is not the information that a servlet would expect to receive: this is
because what is really being called is HttpRexx.rex, not the servlet; and 2) the
information passed to CGI and Mod_Rexx is not consistent (because the CGI
specification is ambiguous or inconsistent, or because the values of the variables
are not what one should expect, or because CGI and Mod_Rexx return different
values).

The first problem can be solved easily, because, even if the servlet engine does
not receive a set of variables which are ready to be passed to the servlet, those
values can be computed quite easily from the received values (i.e., we get enough
information to reconstruct a suitable set of CGI-like variables).

The second problem cannot be solved without taking a number of design deci-
sions:

4If somebody knows of a simpler solution, please email me.

3.3. DESIGN DECISIONS AND COMPROMISES 17

3.3.3.1 PATH_INFO, PATH_TRANSLATED, SCRIPT_FILENAME and WWWFILENAME

The PATH_TRANSLATED variable has an inconsistent definition in the CGI spec-
ification:®> on the one hand, PATH_INFO is defined as “The extra path infor-
mation, as given by the client.” Then the CGI specification goes on to de-
fine PATH_TRANSLATED as follows: “The server provides a translated version of
PATH_INFO, which takes the path and does any virtual-to-physical mapping to
it.” Of course this is nonsense: if a URL of the form

http://somehost/page.html/extra/path/info

is used, PATH_INFO is "/extra/path/info", and then PATH_TRANSLATED should
be “a translated version of PATH_INFQ” (translated to what?), “which takes the
path” (which path? PATH_INFO itself?) “and does any virtual-to-physical map-
ping to it” — but PATH_INFO, in general, is designed not to have any physical
mapping!

Apache, for example, does not set PATH_TRANSLATED when calling a CGI, but, if
the CGI has some extra path information, it returns the real path info without
the filename, but appended to the directory where the CGI resides — a useless
value.b Similarly, Mod_Rexx defines PATH_TRANSLATED to be “the fully quali-
fied path and filename of the script”, but, since it returns the values provided
by Apache, it gives the wrong result when there is some extra path info (but
the right result when there is not, unlike CGI). RexxHttp’s PATH-TRANSLATED
method consistently returns the fully qualified path and filename of the called
script, regardless of whether there is some extra path info or not. And, again
consistently, PATH_INFO returns the (translated) path info when there is some
path info, and the null string when there is no path info.

3.3.3.2 SCRIPT_NAME

SCRIPT_NAME is defined by the CGI specification as “A virtual path to the
script being executed, used for self-referencing URLs”, and Mod_Rexx defines
WWWSCRIPT_NAME as “the fully qualified URI path and name of the script”. This
seems to imply that no extra path information should be included in the value
of this variable. Then Apache returns the virtual path with no extra path info,
and Mod_Rexx returns the virtual path with the (translated) extra path info, if
there is such path info. RexxHttp consistently returns the virtual path to the
servlet or RSP file in all cases (that is, without any extra path info).

3.3.3.3 REQUEST_URI and WWWUNPARSEDURI

Apache defines a non-standard CGI variable called REQUEST_URI as “the por-
tion of the URL following the scheme and host portion”. This is equiva-
lent to Mod_Rexx WWWUNPARSEDURI, which is defined (somewhat strangely)

5See http://hoohoo.ncsa.uiuc.edu/cgi/env.html.

6 Apache returns what should be PATH_TRANSLATED in the non-standard CGI variable
SCRIPT_FILENAME, but with all backslashes translated to forward slashes. This is the same
as Mod_Rexx WWWFILENAME. RexxHttp has a FILENAME method which returns the same value,
but with the backward slashes intact, if any.

http://hoohoo.ncsa.uiuc.edu/cgi/env.html

18 CHAPTER 3. RATIONALE

as “the unparsed portion of the request URI”. RexxHttp defines an equiva-
lent REQUEST_URI method and an alias UNPARSEDURI. Then Mod_Rexx defines
WWWURI as “the entire request URI”, and returns the translated URI minus the
query string, if present. This is the value returned by RexxHttp URI method.

3.3.3.4 Other differences between Apache/CGI and /Mod_Rexx

DOCUMENT_ROOT, REMOTE_PORT, SERVER_ADDR and SERVER_SIGNATURE are specific
to Apache/CGI and do not exist under Mod_Rexx. These methods always
return the null string under Mod_Rexx.

3.3.4 Netscape-style cookies and timezones

Rexx does not have any builtin, operating-system independent way of knowing
in which timezone it is operating. Netscape-style cookies use an expires=date
attribute-value pair to indicate their expiration date.” This has several prob-
lems: 1) The time at the server should be right (this is not a problem with
Windows, which can be set to sinchronize with a time server, but can be a
problem in other operating systems, for example vanilla WSEB, which does not
have any kind of synchronization, not even automatic Daylight Savings Time
(DST) switching); 2) The time at the client should be right and coincide with
the time at the server; this can pose security risks if for some reason the time at
the client is earlier than the time at the server; 3) the expires attribute should
be the time in the GMT timezone. This is the real problem: since Rexx does not
know in which timezone it is operating, it cannot reliably calculate the current
time in the GMT timezone.

Fortunately, most timezones work in the same way: there is a standard offset
from GMT, and an extra offset to apply when DST is active. DST works for
most timezones as follows: DST is activated or deactivated at a specified hour
(normally in the early morning) on a certain weekday of a specified month, for
example, at 2am in the first friday of october, or at 4am in the last sunday of
september. Timezone handling is implemented by setting the _-TIMEZONE vari-
able (see Customize the _.TIMEZONE variable on page 8 and SETTIMEZONE
(Class method) on page 23 for details).

TRFC2109-style cookies do not exhibit this problem, since they make use of the Max-age
attribute. Unfortunately, browser support for RFC2109 is erratic.

Chapter 4

Tutorial

4.1 Introduction

A Rezz servlet is a Rexx external procedure residing in a HTTP server (for
example, Apache, or Microsoft IIS) and designed to programmatically produce
the contents of a server page (the response), or, more generally, a server object
(for example, a graphics file, a pdf object, or a mp3 stream), after some agent
(the requester: normally a user’s browser) has asked for it.

A Rexx servlet receives two arguments: the request, an object that encapsulates
the details about the HTTP request and assists the servlet programmer in ac-
cesing its values in a structured manner, and the response, an object that helps
in assembling and sending the resulting server object (i.e. the HTTP headers
and the response contents) back to the requester.

The RexxHttp servlet engine can process Rexx servlets and RSP pages writ-
ten to run under Mod _Rexx or CGI under different HTTP servers (currrently,
Apache and some versions of Microsoft IIS!). Servlets and RSP pages can be
written in a portable way; see Writing portable servlets in page 47 for details.
In the rest of this chapter we will show how to write both portable and non-
portable servlets.

4.2 A “Hello, world” example

Let us start first with a minimal (CGI-only) servlet:
1: say "Hello, world!"

This is indeed minimal! Under CGI, the servlet engine automatically redirects
SAY output to a buffered Http.OutputStream; once the servlet ends, the re-
sponse is committed, and then flushed. This ensures that the (default) HTTP
headers are actually emitted before the contents of the page.

This program is included in the RexxHttp package as samplel.smp on the
/samples/cgionly directory.

11IS support is experimental in this release.

19

20 CHAPTER 4. TUTORIAL

4.3 A portable ”Hello, world” example

The previous example works only under CGI. Now we want to write a servlet
which works both under CGI and Mod_Rexx:

use arg request, response

output = response”output
response["Content-Type"] = "text/plain"
output~say("Hello, world!")

DWW N -

The first two lines are standard for all servlets. Line 1 retrieves the Http.Request
and Http.Response objects that RexxHttp automatically creates; line 2 retrieves
the servlet output stream object. Line 3 sets the response type, and line 4 out-
puts a single line.

This program is included in the RexxHttp package as sample2.smp on the
/samples/portable directory.

4.4 QOutput buffering and alternative syntax

Let us now consider the following servlet, which is equivalent to the previous
one (that is, it produces the same output):

use arg request, response

output = response”output
output~say("Hello, world!")

: response”Content_Type = "text/plain"

DWW N -

Two things are to note: 1) Line 3 writes some output before setting the response
type: this is possible because standard output is redirected to a buffer, which
is only flushed automatically when the servlet ends or the buffer grows to be
bigger than a maximum size.? 2) The response content type is set using an
alternative syntax: this true in general: all HT'TP headers can be set using

response ["header-name"] = value
or using
response”header_name = value,

where header_-name is the same as header-name, but changing all occurrences
Of n_n by n_u.

This program is included in the RexxHttp package as sample3.smp on the
/samples/portable directory.

2No maximum is implemented at this time.

4.5. RETRIEVING GET/POST ARGUMENTS 21

4.5 Retrieving GET/POST arguments

The following RexxHttp/CGI program lists all the GET/POST arguments and
their values. Since we want to keep things simple, we are producing plain text
output so that the program structure is not cluttered by HTML logic.

1: use arg request

2: say "List of passed parameters:"

3: say "+"||"-""copies(20)"+"||"-""copies(20)"+"

4: do i = 1 To request~arg()

5: say "|" || request~arg(i,"Name") left(20) || "I|" II,
6: request”arg(i,"Value") left(20) || "[|"

7: end

8: say "+"||"-""copies(20)"+"||"-""copies(20)"+"

9:

say "Total:" requestarg() "parameters"

If you request this servlet with a query string of a=b&c=d, the servlet will output

List of passed parameters:

Total: 2 parameters

This program is included in the RexxHttp package as sample4.smp on the
/samples/cgionly directory.

4.6 Generating PDF output

We are now ready for a more sophisticated example. Assume that you want to
generate PDF output. We will assume that you have KTEX installed, and we
will use pdflatex. Since Mod_Rexx does not allow the execution of commands,
this servlet will be a CGI servlet.

use arg request, response
dir = "C:\rexxhttp\temp\"
call directory dir
fn = SysTempFilename (dir"XXX??777.tex")
call lineout fn,"\documentclass[adpaper]{article}"
call lineout fn,"\begin{document}"
if request”arg("name","Omitted") then
call lineout fn,"Hello, no name!"
else call lineout fn,"Hello," request~arg("name")"!"
: call lineout fn,"\end{documentl}"
: call lineout fn

© 00 NO O WN -

[S
N = O

"pdflatex" fn "-interaction=batchmode > nul"
: £ = fn"substr(1,fn"length - 3)
: pdfn = f"pdf"

[
S w

22 CHAPTER 4. TUTORIAL

15: size = stream(pdfn,"c","query size")

16: response”content_type="application/pdf"

17: pdfContents = charin(pdfn,,size)

18: response~output”charout (pdfContents)

19: call stream pdfn,'"c","close"

20: call SysFileDelete f'"tex"; call SysFileDelete f'"pdf"

21: call SysFileDelete f'"aux"; call SysFileDelete f'"log"

We do not do any kind of error handling to keep the program length to a mini-
mum. The program takes a query argument called "name" (the string "no name"
is substituted if no such argument exists), dynamically creates a temporary .tex
file with a customized greeting, calls pdflatex, returns the resulting .pdf file
as the response, and erases all temporary files. The program has been tested
under Windows XP with the MiKTeX distribution of (La)TeX. You might need
to change the temporary directory in line 2.

This program is included in the RexxHttp package as sample5.smp on the
/samples/cgionly directory.

Chapter 5

Class Reference

5.1 The Http.Cookie class

A Http.Cookie object is used to store HTTP cookies. Support is provided
for Netscape-style! (“version 0”) cookies and RFC2109? (“version 1”) cookies.
Please note that support for RFC2109 cookies is inconsistent amongst different
browsers.

5.1.1 SETTIMEZONE (Class method)

>>-SETTIMEZONE (timezone_string) ———————————————————————————————— ><

Sets the timezone information to be used when constructing the Expires at-
tribute of Nescape-style cookies. The timezone_string should have the following
format:

base dst [hourl weekdayl posl monthl hour2 weekdayl posl monthl]

where:

Base is the (eventually signed) base offset from GMT to apply when DST is
not in effect, in the format [+|-]Jhh[:mm[:ss]], i.e., when DST does not apply,
GMT time + base = local time.

Dst is the (eventually signed) time offset that should be applied to base when
DST applies, in the format [+|-]Jhh[:mm[:ss]], i.e., if DST is in effect, then
GMT time + base + dst = local time. If your timezone does not use DST, set
DST to 0 (or 00:00, etc.). The following tokens indicate the starting and ending
datetimes for DST, and are not used when DST = 0.

The quadruple hourl weekdayl posl monthl is interpreted in the following
way: hourl is the (unsigned) time of the day when DST begins, in the format
hh[:mm[:ss]]. DST will begin on the posi-th day of the week corresponding
to the whole number weekday! (where 1=Mon,...,7=Sun) on month monthl

1See http://wp.netscape.com/newsref/std/cookie_spec.html.
2See http://www.ietf.org/rfc/rfc2109.txt.

23

http://wp.netscape.com/newsref/std/cookie_spec.html
http://www.ietf.org/rfc/rfc2109.txt

24 CHAPTER 5. CLASS REFERENCE

(where 1=Jan,...,12=Dec). If pos! = 5 this means the last weekdayl-th day of
the week of the month.

The quadruple hour?2 weekday2 pos2 month?2 is interpreted in the same way, and
designates the datetime when DST ends.

Examples:
.Http.Cookie“setTimeZone ("+01:00 +01:00 02:00 5 1 10 03:00 7 5 4")

The base offset from GMT is +1 hour when DST is not in effect, and +2 hours
when DST is in effect. DST starts at 2 am on the first (1) Friday (5) of October
(10), and ends at 3 am of the last (5) Sunday (7) of April (4).

.Http.Cookie“setTimeZone ("-06:00 00:00")

The base offset from GMT is -6 hours. There is no DST.

Note: This class method is automatically called by RexxHttp at startup.
RexxHttp evaluates the _TIMEZONE variable, and passes its unchanged value
to the method. If there is some error in the _TIMEZONE variable, a SYNTAX error
is raised; is the _TIMEZONE variable is not set, the GMT timezone is assumed,
with no DST.

5.1.2 TIMEZONEOFFSET (Class method)

>>=TIMEZONEQFFSET -~ === === === mmm oo oo ><

Returns a whole number expressing the current timezone offset from GMT in
seconds. The returned value takes into account DST variations. The value re-
turned is such that local time - timezoneoffset = GMT time.

Examples:

-—- After...
.Http.Cookie~setTimeZone ("+01:00 +01:00 02:00 5 1 10 03:00 7 5 4")

-- On 20062109, at any time,
.Http.Cookie"TimeZoneOffset -> 3600 -- 1 % 60 * 60

-— The first Friday in October 2006 is 6.

-- On 20061006 at 1:15:00,
.Http.Cookie"TimeZoneOffset -> 3600 --— 1 % 60 * 60

-- On 20061006 at 2:00:00,
.Http.Cookie TimeZoneOffset -> 7200 -- 2 % 60 * 60

—-- After .Http.Cookie“setTimeZone("-06:00 00:00")
.Http.Cookie"TimeZoneOffset -> -21600 -- -6 * 60 * 60
-- (always: no DST)

5.1. THE HTTP.COOKIE CLASS 25

5.1.3 INIT

>>-INIT(name,value) ———————————— === === ><

Initializes a new cookie object. The name and the value of the cookie are strings.
The name must conform to RFC2109, that is, it must only use ASCII non-
control characters different from ()<>@,;:\"/[17={}¢, and cannot begin with
"$". The value can be any string. Take into account that the cookie name plus
the cookie value cannot exceed 4096 bytes, and that non-ASCII characters and
some other characters will have to be encoded before storing the cookie value.
A safe assumption would be that the value can use at least 1000 characters.

5.1.4 COMMENT

>>= COMMENT —— == == == = = = = = = ><

Returns a string containing the comment of the cookie, or the null string if the
comment is not set (the default).

5.1.5 COMMENT=

>>-COMMENT=comment——--—=—====————==————————————————————————————— ><

Sets the comment of the cookie to comment, which must be a string. If comment
is equal to the null string, the comment is unset.

5.1.6 DOMAIN
>>=DOMA TN === == === = = = o ><

Returns a string containing the domain of the cookie, or the null string if the
domain is not set.

5.1.7 DOMAIN=

>>-DOMAIN=domain--—-—--————--—-———————————-———————————————————————— ><

Sets the domain of the cookie to domain, which must be a string. If domain is
equal to the null string, the domain is unset.

5.1.8 MAKESTRING

>>=MAKESTRING= === === m = o oo oo ><

Returns a string representation of the cookie. The returned string is suitable to
be the value of a Set-Cookie header.

Example:

cookie"makestring
-> "NAME=value; expires=Tue, 10-0ct-2006 14:26:28 GMT"

26 CHAPTER 5. CLASS REFERENCE

5.1.9 MAX_AGE

>>=MAX _AGE ~— == === = o ><

Returns the maximum age of the cookie as a whole number. If none was speci-
fied, a negative value is returned. See MAX_AGE=, which follows.

Example:

cookie"max_age -> 120 /* Cookie lasts 2 minutes */

5.1.10 MAX_AGE=

>>-MAX_AGE=seconds———---—-————————————————————— oo ><

Sets the maximum age of the cookie to seconds, which must be a whole number.
The cookie will expire after seconds seconds have passed. If seconds is nega-
tive, the cookie is a session cookie (the default) and will be deleted when the
requester (usually the web browser) exits. If seconds is zero, the cookie will be
deleted.

Example:

cookie"max_age = -3 -> /* Cookie is now a session cookie */
5.1.11 NAME

S>> NAME —— = —— —m ><
Returns a string containing the name of the cookie.

Example:

cookie“name -> "MYCOOKIE" /* Maybe */

5.1.12 PATH
>> P ATH— === === == ><

Returns a string containing the path of the cookie, or the null string if the path
has not been set (the default).

5.1.13 PATH=
>>-PATH=path-------—"--"-"--"""""""""""""""""""""" ><
Sets the path of the cookie to path. If path is the null string, the path is unset.
5.1.14 SECURE

>>=SECURE- === == == == = = = ><

Returns 1 if the cookie is secure, or 0 if the cookie is not secure (the default).

5.1. THE HTTP.COOKIE CLASS 27

5.1.15 SECURE=

>>-SECURE=value-—————----—--------———-—————————————————————————— ><

Sets the secure attribute of the cookie to value, which must be 0 or 1.

5.1.16 VALUE
>V ALY B~ m o ><

Returns the value of the cookie.

5.1.17 VALUE=
>>=VALUE=valu@=———=—====== === ><

Sets the value of the cookie to value.

5.1.18 VERSION
>>=VERSTON === === = = o oo ><

Returns the version number of the cookie, i.e., 0 for Netscape-style cookies, and
1 for RFC2109-style cookies.
5.1.19 VERSION=

>>-VERSION=version--—---——--————————————— ><
Sets the version number of the cookie to wversion, which must be a positive

whole number between 0 and 1. If version is 0, this is a Netscape-style cookie;
if version is 1, this is a RFC2109 cookie.

28 CHAPTER 5. CLASS REFERENCE

5.2 The Http.OutputStream class

Http.OutputStream is a subclass of the builtin Stream class that stores its
output in an internal buffer and has an associated Http.Response object. Each
Http.OutputStream has an underlying stream where the output contents is writ-
ten when the stream is closed or flushed. At creation time, the stream is marked
as transient and is open for output only, unless the underlying stream is not in
the READY state, in which case the stream remains closed and cannot be opened.
All the Stream input methods will raise the NOTREADY condition and return a
default value. Closing the stream has no effect other than flushing it (i.e., it
remains open after a CLOSE method call).

The following methods are input methods and should not be called

ARRAYIN
CHARIN
CHARS
LINEIN
LINES
MAKEARRAY
SUPPLIER

The following methods are overriden from their corresponding Stream
methods without changing their semantics. See the documentation
for the builtin Stream class for details.

ARRAYOUT
CHAROUT
COMMAND
DESCRIPTION
LINEOUT
POSITION
QUERY
SAY

SEEK
STATE
UNINIT

5.2.1 INIT

>>-INIT (underlying_stream,request,response)-——-———————————————-——~- ><

Initialize the stream by creating the internal buffer, setting the underlying_stream,
and storing the request and the response. The stream name is set to "HTTPOUT: 1"

if the qualified name of the previous stream does not begin by "HTTPOUT:n",

where n is a positive whole number; otherwise, a stream name of the form

"HTTPOUT :m" is assigned, where m = n+ 1. The stream timestamp is set to the

current timestamp.

5.2. THE HTTP.OUTPUTSTREAM CLASS 29

5.2.2 CLOSE

>>=CLOSE— === === == ><

If the file is opened, flushes the stream and returns "READY". The stream remains
opened. See FLUSH, which follows, for more information.

5.2.3 FLUSH

>>=FLUSH= == === === = m = e e ><

If the associated response is not commited, this method first commits the re-
sponse (see the COMMIT method of the Http.Response class on page 43 for more
details). Then the contents of the buffer are written to the underlying stream
and the buffer is reset. Finally, the underlying stream is also flushed, and
"READY:" is returned.

5.2.4 OPEN
>> = QPEN === === === o o ><

Returns the state of the stream and does nothing else. See the description in
The Http. OutputStream class on page 28 for more information.

5.2.5 QUALIFY
>> = QUALTFY ~ === === == = o o ><

Returns the stream name, which has always the form "HTTPOUT:n". See INIT
on page 28.

5.2.6 UNDERLYINGSTREAM
>>~UNDERLY INGSTREAM— == === === === == m e e e ><

Returns the underlying stream.

30 CHAPTER 5. CLASS REFERENCE

5.3 The Http.Request class

Objects of the Http.Request class provide a convenient abstraction that en-
capsulates in a server-independent, OS-independent, and gateway interface-
independent way the details of an HTTP request. RexxHttp automatically
creates a Http.Request object and passes it to the Rexx servlet for processing.
A Http.Request object has methods to access standard CGI variables (both
under CGI and Mod_Rexx), GET/POST arguments, HT'TP cookies, and user-
defined variables.

5.3.1 INIT

>>-INIT(servlet_processor,mod_rexx_vars)-——-———-———————=——————————— ><

Initialize the request. Servlet_processor is the fully qualified stream name of the
RexxHttp.rex servlet processor. Mod_rexz_vars is either the NIL object when
running under CGI, or a directory containing Mod_Rexx’s WWWzzxx variables,
environment variables and the request pointer. RexxHttp automatically sets
these values when creating the request object.

5.3.2]

>>-[method_name] ——————=———————————— ><

Allows for an alternative, directory-like, syntax for the Http.Request class. The
entry_name is uppercased, and all occurrences of "-" are translated to "_"; if
the resulting string is the name of a known Http.Request method (other than
"[1" itself), the corresponding method is called with an empty argument list;
otherwise, the message is forwarded to the UNKNOWN method. See UNKNOWN on
page 40 for more details.

Examples:

request ["Content-Type"] -- Same as request”content_type
request ["HTTP-ACCEPT"] -- Same as request~http_accept
request ["_FNameTemplate"] -- Same as request”_fnametemplate

5.3.3 _variable

>>-_variable_name--—---——---——----——---———————— - ><

Returns the passed variable _variable_name. This method is handled by the
UNKNOWN method. Set UNKNOWN on page 40 for more details.

Examples:

request”_RSPCompilers -> 2 /* Maybe */
request”_Cities -> "Ibiza Barcelona" /* Maybe */

5.3. THE HTTP.REQUEST CLASS 31

5.3.4 ARG

>>-ARG-—+-———————mmmmmm o ><
+-(n——+--———--——- +-)————- +
| +-,option—+ |
+-(string—+------———+-)-+

+-,option-+
Returns information about the GET/POST arguments passed to the program.

If you specify neither n nor name, the number of arguments is returned. Note
that duplicate argument names count as different arguments.

If you specify only n, the n-th argument string is returned. If n is greater than
the number of arguments, the null string is returned. N must be a positive
whole number.

If you specify only string, the value of the argument with name string is re-
turned, if one exists. Otherwise the null string is returned. String cannot be a
positive whole number.

If you specify option, the value returned depends on the value of option. The
following are valid options. (Ounly the capitalized letter is needed; all characters
following it are ignored.)

Exists If n was specified, returns 1 if the n-th argument exists (i.e., if there
are at least n arguments); otherwise, it returns 0. If string was specified,
returns 1 if an argument named string exists; otherwise, it returns 0.

Name If n was specified, returns the name of the n-th argument, if there are
at least n arguments; otherwise, it returns the null string. If string was
specified, returns string if an argument named string exists; otherwise, it
returns the null string.

Omitted If n was specified, returns 1 if there are less than n arguments; other-
wise it returns 0. If string was specified, returns 1 if there is no argument
named string; otherwise it returns 0.

Value If n was specified, returns the value of the n-th argument, if there are
at least n arguments; otherwise, it returns the null string. If string was
specified, returns the value of the last argument with name string, if such
an argument exists; otherwise, it returns the null string.

Note: When the request method is GET, query parameters are parsed from
left to right. Therefore, name-based ARG method calls will always refer to the
last occurrence of a parameter. When the request method is POST, no special
order of the parameters should be assumed.

Note: If running under Mod_Rexx and the request method is POST, the HTTP
response has to be committed; otherwise, an internal error will occur.

Examples:

32 CHAPTER 5. CLASS REFERENCE

/* Following GET /somedir/program.rex?a=b&c=23&d=&a=13 */

request~arg() -> 4 /* Not 3 %/
request~arg(1,"V") -> "p"
request~arg(2, "Name") -> "c"

request”arg("d","exist") -> 1
request”arg("a","Value") -> 13 /* Not "b" */
request”arg("k","Omit") > 1

5.3.5 AUTH_TYPE
>>=AUTH_TYPE-—=== === === === m oo ><
Returns the protocol-specific authentication method used to validate the user,

if the server supports authentication and the script is protected. Otherwise the
method returns the null string.

Examples:
request~auth_type -> nn /* Script not protected */
request”auth_type -> "BASIC" /* Maybe */

Note: The value returned by this method is the value of the standard CGI
environment variable AUTH_TYPE. Under Mod_Rexx the WWWAUTH_TYPE variable
has the same value.

5.3.6 CONTENT_LENGTH

>>=CONTENT_LENGTH-—= == === === = m oo ><

For queries which have attached information, such as HTTP POST and PUT,
returns the length of the data. Otherwise the method returns the null string.

Note: The value returned by this method is the value of the standard CGI envi-
ronment variable CONTENT_LENGTH. Under Mod_Rexx, the WWWCONTENT_LENGTH
variable has the same value.

5.3.7 CONTENT_TYPE

>>=CONTENT _TYPE- === === m - mmm oo oo oo oo ><

For queries which have attached information, such as HTTP POST and PUT,
returns the content type of the data. Otherwise the method returns the null
string.

Note: The value returned by this method is the value of the standard CGI
environment variable CONTENT_TYPE. Under Mod_Rexx, the WWWCONTENT_TYPE
variable has the same value.

5.3. THE HTTP.REQUEST CLASS 33

5.3.8 COOKIE

>>-CO0KIE-+-—-———————————————————— o ><
+-(n——+-———-————- +-)————— +
| +-,option-+ |
+-(string—+---------+-) -+

+-,option-+
Returns information about the HTTP cookies passed to the program.

If you specify neither n nor name, the number of cookies is returned. Note that
duplicate cookie names count as different cookies.

If you specify only n, the value of n-th cookie is returned. If n is greater than
the number of cookies, the null string is returned. N must be a positive whole
number.

If you specify only string, the value of the cookie named string is returned, if
one exists. Otherwise the null string is returned. String cannot be a positive
whole number.

If you specify option, the value returned depends on the value of option. The
following are valid options. (Ounly the capitalized letter is needed; all characters
following it are ignored.)

Exists If n was specified, returns 1 if the n-th cookie exists (i.e., if there are at
least n cookies); otherwise, it returns 0. If string was specified, returns 1
if a cookie named string exists; otherwise, it returns 0.

Name If n was specified, returns the name of the n-th cookie, if there are at
least n cookies; otherwise, it returns the null string. If string was specified,
returns string if a cookie named string exists; otherwise, it returns the null
string.

Omitted If n was specified, returns 1 if there are less than n cookies; otherwise
it returns 0. If string was specified, returns 1 if there is no cookie named
string; otherwise it returns 0.

Value If n was specified, returns the value of the n-th cookie, if there are at
least n cookies; otherwise, it returns the null string. If string was specified,
returns the value of the last cookie with name string, if such an argument
exists; otherwise, it returns the null string.

Examples:
request”~cookie() -> 3 /* Maybe */
request”cookie(1,"V -> "b" /* Maybe */

request”cookie(2,"Name") -> "a" /* Maybe */
request”cookie(4,"exist") -> 0

34 CHAPTER 5. CLASS REFERENCE

5.3.9 DOCUMENT_ROOT
>>=DOCUMENT_ROQT—-————==== == == mm—m oo oo ><

If running under Apache/CGI, returns the value of the DocumentRoot Apache
configuration directive. Otherwise the null string is returned.

Examples:
request~document_root -> "c:/server" /* Maybe */
request”document_root -> "" /* If running under Mod_Rexx */

5.3.10 FILENAME

>>=FILENAME-— === === === = m o o o ><

Returns the fully qualified path and filename of the CGI or RSP file.

Example:
request”filename -> "c:\test\test.html" /* Maybe */

Note: In Mod_Rexx the WWWFILENAME variable has a similar value. However,
the Mod_Rexx variable has backslashes ("\") translated to forward slashes ("/")
under Windows and OS/2. The value returned by the FILENAME method is ready
to be used as a stream name.

5.3.11 GATEWAY _INTERFACE
>>=GATEWAY_INTERFACE- === === m oo oo oo ><

Returns a string containing the name of the underlying gateway interface. When
running under CGI, the returned string is normally "CGI/1,1"; when running
under Mod_Rexx, this is the value of the WWWGATEWAY_INTERFACE variable.

Examples:

request”gateway_interface -> "CGI/1.1" /* For CGI x/
request”gateway_interface -> "Mod_Rexx/2.1.0" /* For Mod_Rexx */
5.3.12 HTTP xxxx

>>-HTTP_header-----------—— - ————— ><

Returns a string containing the value of the HTTP_zzxz header. All HTTP
header methods calls are handled by the UNKNOWN method. See UNKNOWN on
page 40 for more details.

Examples:

request“http_accept_charset -> "IS0-8859-1,utf-8;9q=0.7,%;9=0.7"

-- The following is an equivalent method call
request ["HTTP-ACCEPT-CHARSET"]

5.3. THE HTTP.REQUEST CLASS 35

5.3.13 METHOD

>>=METHOD~~ === == == == = = = = = o ><

This method is the same that REQUEST_METHOD. See REQUEST_METHOD on page
37.

5.3.14 MOD_REXX

>>=MOD _REX K== === == == = o o o ><

Returns 1 if running under Mod_Rexx, and 0 otherwise.

5.3.15 PATH_INFO

>>=PATH_INFQ-— === == === = oo o oo ><

Returns the extra path information, as given by the client, or the null string if
no path info is present.

Here are some examples:

-- After GET /somedir/somefile.html/extra/path/info
request”path_info -> "/extra/path/info"

-- After GET /somedir/somefile.html
request”path_info -> ""

Note: The value returned by this method is the value of the standard CGI
environment variable PATH_INFO. Under Mod_Rexx the WWWPATH_INFO variable
has the same value.

5.3.16 PATH TRANSLATED

>>~PATH_TRANSLATED========== === === == ><
Returns the fully qualified path and filename of the script.

Note: Under Mod_Rexx the WWWPATH_TRANSLATED variable has a similar value.
However, the Mod_Rexx variable has backslashes ("\") translated to forward
slashes ("/") under Windows and OS/2, and does not include the filename when
there is some path info. The value returned by the PATH_TRANSLATED method
contains the filename, and is ready to be used as a stream name. The FILENAME
method returns the same value (see FILENAME on page 34).

5.3.17 POST_STRING

>>=POST_STRING= === === == o oo oo oo ><

36 CHAPTER 5. CLASS REFERENCE

If the request method is "POST" and the arguments have been processed, this
method returns the unparsed name/value pairs of the POST arguments sent to
the server; in all other cases, the null string is returned.

Note: Under Mod_Rexx the WWWPOST_STRING variable has the same value.

Note: To ensure that the arguments have been processed, issue any valid call
to the ARG method. See ARG on page 31 for more details.

5.3.18 QUERY _STRING
>>=QUERY _STRING-——= === === === oo oo oo ><

If the request method is "GET", this method returns the unparsed query string
part of the request URI, if no query string was specified, it returns the null string.

Note: The value returned by this method is the value of the standard CGI
environment variable QUERY_STRING. Under Mod_Rexx the WWWQUERY_STRING
variable has the same value.

5.3.19 REMOTE_ADDR
>>=REMOTE_ADDR === == === = = = o o o ><

Returns the IP address of the remote host making the request.

Note: The value returned by this method is the value of the standard CGI envi-
ronment variable REMOTE_ADDR. Under Mod_Rexx the WWWREMOTE_ADDR variable
has the same value.

5.3.20 REMOTE_HOST
>>-REMOTE _HOST-—====== === === = m o oo oo oo ><
Returns the hostname of the remote host making the request, if it is known;

otherwise it returns the null string.

Note: The value returned by this method is the value of the standard CGI
environment variable REMOTE_HOST. In Mod_Rexx the WWWREMOTE_HOST variable
has the same value.

5.3.21 REMOTE_IDENT

>>=REMOTE_ IDENT - === == === === m oo oo oo oo ><

If the HTTP server supports RFC 931 identification, then this method returns
a string containing the remote user name retrieved from the server. In all other
cases it returns the null string.

Note: The value returned by this method is the value of the standard CGI
environment variable REMOTE_IDENT. Under Mod_Rexx the WWWREMOTE_IDENT
variable has the same value.

5.3. THE HTTP.REQUEST CLASS 37

5.3.22 REMOTE_PORT

>>=REMOTE_PORT—— === == == m - m o oo oo ><

Returns a string containing the port being used by the remote user, if known;
otherwise, the null string is returned.

5.3.23 REMOTE_USER

>>=REMOTE_USER— === === == ——m o m oo ><

If the server supports user authentication and the script is protected, returns
a string containing the authenticated username; otherwise, the null string is
returned.

Note: The value returned by this method is the value of the standard CGI envi-
ronment variable REMOTE _USER. Under Mod_Rexx the WWWREMOTE_USER variable
has the same value.

5.3.24 REQUEST METHOD

>>-REQUEST _METHOD- === === == == === m - m o oo ><

Returns a string containing the request method used to make the request, i.e.,
"GET", "POST", "HEAD", etc..

Examples:

request”method -> "GET" /* Maybe */
request”method -> "POST" /* Maybe */

Note: The value returned by this method is the value of the standard CGI envi-
ronment variable REQUEST_METHOD. Under Mod_Rexx the WWWREQUEST_METHOD
variable has the same value. Notice also that Mod_Rexx handles HEAD requests
automatically, without passing them to the servlet processor.

5.3.25 REQUEST_POINTER

>>~REQUEST_POINTER-———====== === m oo oo oo ><

Returns the Mod_Rexx apache request record pointer, if running under Mod_Rexx;
otherwise, the null string is returned.

Note: The REQUEST_POINTER may be used when writing non-portable Mod_Rexx-
dependent servlets and RSPs to call Mod_Rexx-defined functions. See Writing
portable servlets on page 47 for more information.

38 CHAPTER 5. CLASS REFERENCE
5.3.26 REQUEST _URI
>>=REQUEST _URI~=——= === === == m o m oo oo ><

Returns a string containing the unparsed request URI. This includes the query
string. Compare with URI on page 41.

Example:

-- After GET /dir/servlet.rex/ path 7a= b &c=d
request”uri -> "/dir/servlet.rex/%20path%207a=%20b%20&c=4"

Note: Under Mod_Rexx the WWWUNPARSERURI variable has the same value.

5.3.27 SCRIPT_NAME

>>=SCRIPT _NAME == === == oo oo o ><

Returns a virtual path to the script being executed, which can be used to build
self-referencing URLs.

Example:

-- After GET /path/servlet.rex/extra/path/info
request”script_name -> "/path/servlet.rex"

Note: The value returned by this method is the value of the standard CGI envi-
ronment variable SCRIPT_NAME. Under Mod_Rexx the WWWSCRIPT_NAME variable
has the same value.

5.3.28 SERVER_ADDR

When running under Apache/CGI, returns the IP address of the server. Under
Apache/Mod_Rexx, returns the null string.

5.3.29 SERVER_ADMIN

Under Apache, returns the value of the Apache ServerAdmin directive. In all
other cases, the null string is returned.

Examples:

request”server_admin -> "john@doe.com" /* Under apache */
request”server_admin -> "" /* Under IIS */

Note: The value returned by this method is the value of the Apache-specific
CGI environment variable SERVER_ADMIN. When running under Mod_Rexx, a
call to WWWSrvRecServer_admin returns the same value.

5.3. THE HTTP.REQUEST CLASS 39

5.3.30 SERVER _NAME
>>=SERVER _NAME -~ === == == = = = m o o ><

Returns the server’s hostname, DNS alias, or IP address as it would appear in
self-referencing URLs.

Note: The value returned by this method is the value of the standard CGI envi-
ronment variable SERVER_NAME. Under Mod_Rexx the WWWSERVER_NAME variable
has the same value.

Example:

request”server_name -> "www.example.com" /* Maybe */

5.3.31 SERVER_PORT
>>=SERVER_PORT === == === — - m oo oo oo ><

Returns the port number to which the request was sent.

Examples:
request”server_port -> 80 /* Usually */
request”server_port -> 443 /* For HTTPS */

Note: The value returned by this method is the value of the standard CGI envi-
ronment variable SERVER _PORT. Under Mod_Rexx the WWWSERVER_PORT variable
has the same value.

5.3.32 SERVER _PROTOCOL
>>=SERVER_PROTOCOL-———==== === === m—m oo oo ><

Returns the name and revision of the information protocol this request came in
with, in the following format: protocol/revision.

Example:
request”server_protocol -> "HTTP/1.1"

Note: The value returned by this method is the value of the standard CGI envi-
ronment variable SERVER_PROTOCOL. Under Mod_Rexx the WWWSERVER_PROTOCOL
variable has the same value.

5.3.33 SERVER _SIGNATURE

Under Apache/CGI, returns the value of the Apache-specific SERVER_SIGNATURE
CGI variable. In all other cases, the null string is returned.

>>=SERVER_SIGNATURE-——=—==== === == o m o oo oo oo ><

40 CHAPTER 5. CLASS REFERENCE

Example:

request”server_signature
-> "Apache/1.3.35 Server at www.example.com Port 80"

5.3.34 SERVER_SOFTWARE
>>=SERVER_SOFTWARE-——— === === = —— — oo oo o m o eeee ><

Returns a string containing the name and version of the information server soft-
ware answering the request (and running the gateway), in the following format:
name/version

Example:
request”server_software -> "Apache/2.0.58 (Win32) Mod_Rexx/2.1.0"

Note: The value returned by this method is the value of the standard CGI envi-
ronment variable SERVER_SOFTWARE. Under Mod_Rexx the WWWSERVER_SOFTWARE
variable has the same value.

5.3.35 SERVLET_PROCESSOR

>>=SERVLET_PROCESSOR-———==—=—==== == == m—m oo mmmm ><

Returns the fully qualified stream name for the current RexxHttp Servlet pro-
cessor, as obtained by the PARSE SOURCE instruction when run by the Servlet
processor.

Example:

request”servlet_processor -> "c:\apache\cgi-bin\RexxHttp.rex"

5.3.36 SYSTEM_VERSION

Returns a string identifying the RexxHttp version. This string is always of the
form

"REXXHTTP/release . version additional_info"

For the current version, this is "REXXHTTP/0.1 20061101".

5.3.37 UNKNOWN
>>-UNKNOWN (messagename ,messageargs) ———————————————————————————— ><

Returns the value of an environment variable. Messageargs should always be
an array with no elements. Messagename may be of the form HTTP_header or
_variablename. See also the description for the [] method on page 30.

Examples:

request~http_keep_alive -> 300 /* Maybe */
request” _rspcompilers -> 2 /% Maybe */

5.3. THE HTTP.REQUEST CLASS 41

5.3.38 UNPARSEDURI
>>=UNPARSEDURT ~ === == == = = = = = = o o ><

This method is the same that REQUEST_URI. See REQUEST_URI.

Note: Contrast with URI, which follows.

5.3.39 URI

Returns a string containing the translated uri, minus the query string, if any.

Example:

—-- After GET /path/somefile.rex/ extrapath?a=b
request”unparseduri -> "/path/somefile.rex/%20extra},20path?a=b"
request”uri -> "/path/somefile.rex/ extra path"

42 CHAPTER 5. CLASS REFERENCE

5.4 The Http.Response class

A Http.Response object assists a servlet in sending a response to the requester.
RexxHttp automatically creates a response object for each incoming request and
passes it as the second argument to the Rexx servlet. The response includes
an associated Http.OutputStream object where the response contents should be
written.

5.4.1 INIT

>>-INIT(request) ——————————————————————— - ><
Initializes the response with the provided request value. Request is the Http.Request
object representing the request. A Http.OutputStream is created and initial-
ized with the request and the response, and the Content-Type header is set to
"text/plain" (this can be changed later by the servlet if so desired).

Note: RexxHttp automatically creates a Http.Response which is passed as the
second argument to every Rexx servlet.

5.4.2 []

>>-[header_name] ————————————————— - ><
Translates to uppercase the header_name, which should be a string, and then
returns the value of the corresponding HTTP header if it has been set. If the
header has not been set, the method returns the NIL object.

Example:

response["Content-Type"] --> "text/plain" /* Maybe */

Note: HTTP header values can be accessed using the [1 method, or using the
response~header_name syntax. See UNKNOWN on page 44 for more details.

5.4.3 [|=

>>-[header_name]=header_value-----—--—-—————————————————————————— ><
Translates to uppercase the header_name, which should be a string, and then
sets the value of the corresponding HT'TP response header to header_value,
which should also be a string. If the header had previously been set, the old
value is replaced with the new header_value.

Example:

response["Content-Type"] = "text/html"

Note: HTTP response header values can be set by using the [1= method, or
by using the response~header_name=value syntax. See UNKNOWN on page 44.

5.4. THE HTTP.RESPONSE CLASS 43

5.4.4 ADDCOKIE
>>-ADDCOOKIE (COOKi@) —=====mmmmm o= oo oo oo ><

Adds a copy of the Http.Cookie cookie to the response to be sent to the re-
quester.

Example:

—-- Create a new cookie
¢ = Http.Cookie™new("MyCookie","CookieValue")

—-- Set some cookie attributes
c"max_age = 120 /* Cookie will last 2 minutes */

—-- Add the cookie to the response
response”~addcookie(c)

Note: Since a copy of the cookie is added to the response and not the cookie
itself, further changes to the original cookie will have no impact on the response.

5.4.5 COMMIT
>3 = QMM L T == — = = o= o ><

Commits the response by sending the HT'TP headers and cookies to the re-
quester. If the response has already been committed this method has no effect.

5.4.6 COMMITTED
>3 = COMMI TTED—— === === = = o oo o ><

Returns 1 (true) if the response has been committed, and 0 (false) otherwise.

5.4.7 FLUSH
>> = FLUSH- =~ === === = o o ><

Commits the response in case it had not been commited previously, and then
flushes the associated stream.

Note and example: This method can be used to immediately send part of
the response contents to the requester. For example, a web application can send
partial results of a long-running computation to the requester as soon as they
are obtained:

-- Do some calculations
Say "(Some preliminary results)"

-- This sends the partial page back to the user’s browser
response”flush

44 CHAPTER 5. CLASS REFERENCE

—- Do some more calculations
Say "(Some further results)"

-- Send back these
response”flush

5.4.8 OUTPUT
>> = QUTPUT === === = = = m = e e ><

Returns the associated Http.OutputStream object that is used to write the con-
tents of the response. See The Http. Response class on page 42 for more details.

Example:

-- Get the output object
out = response”output

—-— Write some data to the obtained stream
out~charout (datachunk)

Note: RexxHttp automatically sets the destination of the standard .output
object to be the response’s output object. Under CGI, all output activity di-
rected to the standard output stream will be directed to the response content:
for example, the SAY instruction makes implicit use of .output, and therefore
CGI servlets can produce their output directly as if they were normal console
programs. On the other hand, Mod_Rexx traps the SAY instruction, and there-
fore the response~output object has to be used to attain the desired results.
Of course this second method also works under CGI. See Portable input/output
on page 47 for more details.

5.4.9 UNKNOWN

>>-UNKNOWN (method_name ,method_args) ————-—--———————————————————— ><

Allows for a syntax alternative to the []1 and []= methods.

If method_name does not end with "=", method_args should be an empty array.
All occurrences of 77 in method_name are replaced by ”-”; then the HTTP
header corresponding to the resulting value is returned.

If method_name ends with =", method_args should be an array with a single
string element. Method_name is stripped of its trailing ”=", and all occurrences
of 77 are replaced by ”-”; then the HT'TP header corresponding to the resulting
value is created or updated with the argument value.

In all other cases a syntax error is raised.

Examples:

5.4. THE HTTP.RESPONSE CLASS

response”content_type
-- Same as response["Content-Type"]

response”content_type = "text/plain"
-- Same as response["Content-Type"] = "text/plain"

45

46

CHAPTER 5. CLASS REFERENCE

Chapter 6

Writing portable servlets

By following some simple conventions, it is possible to write portable servlets.
A servlet is portable when it runs unchanged across gateway interfaces (i.e.,
Mod_Rexx and CGI) and HTTP servers (i.e., Apache, IIS, etc.).

Note: Although it is also possible, by following certain provisions, to program
servlets in such a manner that they are also independent of the operating system
(Windows, OS/2, Linux, etc.), we will not enter into this aspect of the problem
here.

Here’s a short list of recommendations to follow if you want to write portable
servlets:

1. Don’t use command instructions addressed to Address COMMAND, since the
Mod_Rexx processor cannot handle them.

2. Never use instructions which manipulate STDOUT directly (e.g., the SAY
instruction) — always use the response~output stream explicitly.

3. If your servlet is handling a POST request, assume that the response will
be flushed at the time of your first request~arg method invocation.

4. Use only portable request methods (a list is provided below).

5. If you need to use passed environment variables, do it in a portable way
(i.e., follow the RexxHttp naming conventions).

The following sections provide more details about points 2-5 above.

6.1 Portable input/output

The input/output models of CGI and Mod_Rexx are radically different: while
CGI works with STDOUT, and therefore implements all ooRexx-defined ways to
interact with STDOUT (i.e., the SAY instruction, but also LINEQUT, CHAROUT, etc.),
Mod_Rexx takes a different approach: trapping the SAY instruction, and effec-
tively disabling all other methods of output to STDOUT.

47

48 CHAPTER 6. WRITING PORTABLE SERVLETS

RexxHttp, on the other hand, uses the powerful standard file redirection capa-
bilities of ooRexx to implement a stackable, buffered output system that allows
for the lazy writing of headers and cookies. Thus, RexxHttp allows, in princi-
ple, the use of all ooRexx possibilities of interacting with STDOUT. However, if a
servlet is run under Mod_Rexx, and since the SAY instruction is trapped, using
SAY directly would bypass the buffering provided by the Http.OutputStream,
and possibly emit the page contents before the headers, thus causing an internal
server error.

Therefore the SAY instruction and all builtin functions that implicitly refer-
ence STDOUT cannot be used when writing servlets under Mod_Rexx. Hence,
the way to write I/O-portable Rexx servlets is to always make explicit use of
the Http.OutputStream object returned by the OUTPUT method of the request.

6.2 Portable POST request processing

Mod_Rexx commits the response when you call wwwGetArgs. When running
under Mod_Rexx, RexxHttp does not need to call this function to be able
to parse query parameters when the request method is GET; however, a call
to wwwGetArgs is needed when the request method is POST, and therefore
RexxHttp automatically commits the response (if it was not previously com-
mitted) when a syntactically valid call to the ARG method is made.

To write portable servlets that process POST requests, take into account that
the response may be implicitly committed when using the ARG method for the
first time.

6.3 Portable request methods

Because of the differences between implementations, CGI and Mod_Rexx pass
different sets of variables to the called Rexx program. RexxHttp passes most
(not all; see below) variables to the servlet, but, of course, is not able in the
general case to provide a value under Mod_Rexx for a variable which exists only
under CGI, and viceversa. The same is true of the differences between the CGI
variables passed by different servers (for example, Apache and IIS).

The following tables group all Http.Request methods in two categories: portable
methods will work under all gateway interfaces and all HTTP servers; non-
portable methods are CGI (or Apache, IIS, etc.) specific, or Mod_Rexx specific,
and should only be used in the knowledge that you are writing a non-portable
servlet.

The following method calls are portable:

49

6.3. PORTABLE REQUEST METHODS
Method Mod_Rexx variable Notes
ARG N/A
AUTH_TYPE WWWAUTH_TYPE

CONTENT_LENGTH
CONTENT_TYPE
COOKIE
DEFAULT_TYPE
FILENAME
GATEWAY_INTERFACE
HTTP_xxxx
METHOD

MOD_REXX
PATH_INFO
PATH_TRANSLATED
POST_STRING
REMOTE_ADDR
REMOTE_HOST
REMOTE_IDENT
REMOTE_USER
REQUEST_METHOD
REQUEST_URI
SCRIPT_NAME
SERVER_NAME
SERVER_PORT
SERVER_PROTOCOL
SERVER_SOFTWARE
SERVLET_PROCESSOR
UNPARSEDURI

URI

WWWCONTENT_LENGTH
WWWCONTENT_TYPE
N/A
WWWDEFAULT_TYPE
WWWFILENAME (1)
WWWGATEWAY_INTERFACE | (2)
N/A
WWWREQUEST_METHOD (3)
(None) (4)
WWWPATH_INFO
WWWPATH_TRANSLATED | (1) (5)
WWWPOST_STRING (6)
WWWREMOTE_ADDR
WWWREMOTE_HOST
WWWREMOTE_IDENT
WWWREMOTE_USER
WWWREQUEST _METHOD (7)
WWWUNPARSERURI
WWWSCRIPT_NAME
WWWSERVER_NAME
WWWSERVER_PORT
WWWSERVER_PROTOCOL
WWWSERVER_SOFTWARE
(None)
WWWUNPARSEDURI
WWWUNPARSEDURI

Notes: (1) Under Windows and OS/2, the path separator is "\" and not "/"
as in Mod-Rexx. (2) Value is different when running under Mod_Rexx or CGL

(3) Alias for REQUEST_METHOD. (4) 1 under Mod Rexx, 0 otherwise.

(5) In-

cludes the pathname and also the file name and extension. (6) Always "" if
the REQUEST_METHOD is not POST, or before the first call to ARG. (7) Mod_Rexx
automatically handles HEAD requests without passing them to RexxHttp. The
same is not true of CGI.

The following methods are non-portable:

Method

Notes

REMOTE_PORT
REQUEST_POINTER
SERVER_ADDR
SERVER_ADMIN

SERVER_SIGNATURE

Apache-Specific. "" under Mod_Rexx
Mod_Rexx specific. "" under CGI.

Apache-Specific. "" under Mod_Rexx
Apache-Specific. "" under Mod_Rexx
Apache-Specific. "" under Mod_Rexx

The following standard Mod_Rexx variables are not accesible under RexxHttp:

50 CHAPTER 6. WRITING PORTABLE SERVLETS

Variable Notes

WWWENAMETEMPLATE | Set the appropriate variable, and use method
_FNAMETEMPLATE instead.

WWWHOSTNAME Use SERVER_NAME instead.

WWWRSPCOMPILER See Specifying page compilers on page 8.

6.4 Portable variable passing

CGI environment variables are accessible by using the VALUE builtin function,
but Apache limits their syntax to use only alpabetic characters, numbers and
underscores. Mod_Rexx variables are directly accesible to the Mod_Rexx ap-
plication, but unfortunately they are not global (i.e., following standard Rexx
semantics, they are only available to the main program). Furthermore, there is
no way under Mod_Rexx to get a list of all the passed RexxSetVar variables.

Hence the limitations imposed on the form of passed variables (see Passing vari-
ables on page 6), and the following rule, which should now be obvious: if you
want to write portable servlets, use only uppercase letters, numbers and under-
scores for the environment variables you intend to use in your application, make
sure that these variables all begin with an underscore, and always access these
variables by using the request~_variable_name (or request [_"variable_name"])
syntax.

Chapter 7

Page compiler interface

7.1 Page compilation interface

RexxHttp provides a simple interface to accomodate the use of different page
compilers. When RexxHttp detects that a file must be compiled, it calls the
appropriate page_compiler in the following way:

Call page_compiler rsp_file, temporary_file, request

Where rsp_file is the file to compile, temporary_file is the fully qualified name
of a temporary unopened stream, and request is the Http.Request object. The
page compiler may choose to compile the RSP page to a servlet in the tempo-
rary file, or may use some other mechanism and return a different file. If page
compilation proceeds without errors, the page compiler executes the following
instruction.

Return 0 compiled_servlet

The return code is 0, indicating that compilation proceeded without errors; the
compiled_servlet may be identical to the passed temporary_file, in which case
the temporary_file is called and subsequently erased, or different to the passed
temporary_file, in which case the compiled_servlet is called and no erasing occurs.

If the page compiler encounters any kind of error which would prevent succesful
execution of the rsp_file, it returns as follows:

Return rc error_message
The return code rc must be a non-zero whole number, and the error_message
must be a descriptive string indicating the cause of the error. In this case,

RexxHttp emits the return code and the error_message as the response and
then exits abnormally.

ol

52

CHAPTER 7. PAGE COMPILER INTERFACE

Appendices

33

Appendix A

Running RexxHttp under
0OS/2

RexxHttp runs under OS/2 without any modification, provided that Object
Rexx is active.! Rexx programs in OS/2 should have a file extension of .cmd,
not .rex, and therefore you should change the extension of RexxHttp.rex to
.cmd to be able to run RexxHttp under CGI (this change is not necessary if you
are running RexxHttp under Mod_Rexx).

Contrary to Windows and Unix Object Rexx implementations, Object Rexx for
0S/2 has a system-wide global .environment directory. RexxHttp includes a
special optimization when running under OS/2: you can enhance the perfor-
mance of RexxHttp by pre-loading the support classes in a separate command
window; RexxHttp automatically detects that these classes are preloaded, and
does not have to reload them at each RexxHttp invocation. Here is a sample
code snippet:

.environment ["HTTP.COOKIE"] = "Http.Cookie.cls"()
.environment ["HTTP.REQUEST"] = "Http.Request.cls"()
.environment ["HTTP.OQUTPUTSTREAM"] = "Http.OutputStream.cls"()
.environment ["HTTP.RESPONSE"] = "Http.Response.cls"()

.environment ["HTTP.MUTABLEBUFFER"] =,
"Http.Aux.SimpleMutableBuffer.cls" ()

-- Wait forever

Parse pull .

The last instruction asks for a line of output and keeps the Rexx program run-
ning. This way the reference count of the support classes does not drop to zero
and they are not garbage collected, thus making them available to RexxHttp.

1Tested on Warp Server for e-Business 4.52 and Object Rexx OBJREXX 6.00 18 May 1999.

%)

56

APPENDIX A. RUNNING REXXHTTP UNDER 0OS/2

Appendix B

Running RexxHttp under
Microsoft I1IS

Note: IIS support for RexxHttp should be considered experimental at this time.
RexxHttp detects when it is running under Microsoft IIS!, and automatically
adapts to this server. You should manually associate RexxHttp to the desired
file extensions: open the administration console, right-click on the desired di-
rectory, click “Settings”, press the “Configuration” button, and associate the
file extensions to

ooRexz_executable RexxHttp %s %s
for example

c:\apps\ooRexx\rexx.exe c:\InetPub\test\RexxHttp.rex %s %s

Execution rights should be set to “Scripts and executables”.

Note: Not all RexxHttp features work correctly under IIS. For example, if there
is some extra path info, IIS returns a 404 Not Found error.

ITested under Microsoft-I1S/5.1, which is included in Windows XP.

o7

58 APPENDIX B. RUNNING REXXHTTP UNDER MICROSOFT IIS

Appendix C

Running RSPCOMP under
RexxHttp

Mod_Rexx includes a Rexx Server Pages compiler, rspcomp.rex. The RexxHttp
package includes a modified sample version of RSPCOMP, rhrspcmp.rex, as
well as modified versions of rsptestl.rex, rsptest2.rex and rsptest3.rex,
the three sample programs provided with Mod_Rexx. The modifications are
minimal and are clearly marked, so that you can study them to modify your own
programs if you want to try RexxHttp. RSPCOMP is modified to implement
the page compiler interface described in Page compiler interface in page 51;
the sample programs are modified to follow the servlet portability guidelines of
Writing portable servlets on page 47.

99

60

APPENDIX C. RUNNING RSPCOMP UNDER REXXHTTP

Appendix D

Running REXXTAGS
under RexxHttp

RexxHttp includes a modified version of the REXXTAGS version 1.1¢c Rexx
Server Pages compiler, rhrxtags.rex. This is proof-of-concept alpha version of
the still unreleased version 1.2 compiler: it has been tested to work with simple
REXXTAGS pages (for example, the RexxHttp test server is a REXXTAGS
web), but T have not had time to thoroughly test all the REXXTAGS features;
I prefer to stabilize RexxHttp first.

REXXTAGS version 1.2 will be a transitional version of REXXTAGS designed
to allow easy migration to RexxHttp. It will run under ooRexx and Object Rexx
only, but will not make use of the object-oriented features of Rexx beyond the
obvious adaptations necessary to run under RexxHttp. The following versions
will incorporate more object-oriented features.

61

62

APPENDIX D. RUNNING REXXTAGS UNDER REXXHTTP

Appendix E

Common Public License
Version 1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE
TERMS OF THIS COMMON PUBLIC LICENSE (”AGREEMENT”).
ANY USE, REPRODUCTION OR DISTRIBUTION OF THE PRO-
GRAM CONSTITUTES RECIPIENT’S ACCEPTANCE OF THIS
AGREEMENT.

E.1 Definitions
“Contribution” means:

1. in the case of the initial Contributor, the initial code and documentation
distributed under this Agreement, and

2. in the case of each subsequent Contributor:
a. changes to the Program, and

b. additions to the Program;

where such changes and/or additions to the Program originate from and are
distributed by that particular Contributor. A Contribution ‘originates’ from a
Contributor if it was added to the Program by such Contributor itself or anyone
acting on such Contributor’s behalf. Contributions do not include additions to
the Program which: (i) are separate modules of software distributed in con-
junction with the Program under their own license agreement, and (ii) are not
derivative works of the Program.

“Contributor” means any person or entity that distributes the Program.

“Licensed Patents” mean patent claims licensable by a Contributor which are
necessarily infringed by the use or sale of its Contribution alone or when com-

bined with the Program.

63

64

APPENDIX E. COMMON PUBLIC LICENSE VERSION 1.0

“Program” means the Contributions distributed in accordance with this Agree-

ment.

“Recipient” means anyone who receives the Program under this Agreement,
including all Contributors.

E.2

1.

E.3

Grant of Rights

Subject to the terms of this Agreement, each Contributor hereby grants
Recipient a non-exclusive, worldwide, royalty-free copyright license to re-
produce, prepare derivative works of, publicly display, publicly perform,
distribute and sublicense the Contribution of such Contributor, if any, and
such derivative works, in source code and object code form.

Subject to the terms of this Agreement, each Contributor hereby grants
Recipient a non-exclusive, worldwide, royalty-free patent license under
Licensed Patents to make, use, sell, offer to sell, import and otherwise
transfer the Contribution of such Contributor, if any, in source code and
object code form. This patent license shall apply to the combination of
the Contribution and the Program if, at the time the Contribution is
added by the Contributor, such addition of the Contribution causes such
combination to be covered by the Licensed Patents. The patent license
shall not apply to any other combinations which include the Contribution.
No hardware per se is licensed hereunder.

Recipient understands that although each Contributor grants the licenses
to its Contributions set forth herein, no assurances are provided by any
Contributor that the Program does not infringe the patent or other in-
tellectual property rights of any other entity. Each Contributor disclaims
any liability to Recipient for claims brought by any other entity based on
infringement of intellectual property rights or otherwise. As a condition to
exercising the rights and licenses granted hereunder, each Recipient hereby
assumes sole responsibility to secure any other intellectual property rights
needed, if any. For example, if a third party patent license is required to
allow Recipient to distribute the Program, it is Recipient’s responsibility
to acquire that license before distributing the Program.

Each Contributor represents that to its knowledge it has sufficient copy-
right rights in its Contribution, if any, to grant the copyright license set
forth in this Agreement.

Requirements

A Contributor may choose to distribute the Program in object code form under
its own license agreement, provided that:

1.

2.

it complies with the terms and conditions of this Agreement; and

its license agreement:

E.4. COMMERCIAL DISTRIBUTION 65

(a) effectively disclaims on behalf of all Contributors all warranties and
conditions, express and implied, including warranties or conditions
of title and non-infringement, and implied warranties or conditions
of merchantability and fitness for a particular purpose;

(b) effectively excludes on behalf of all Contributors all liability for dam-
ages, including direct, indirect, special, incidental and consequential
damages, such as lost profits;

(c) states that any provisions which differ from this Agreement are of-
fered by that Contributor alone and not by any other party; and

(d) states that source code for the Program is available from such Con-
tributor, and informs licensees how to obtain it in a reasonable man-
ner on or through a medium customarily used for software exchange.

When the Program is made available in source code form:

1. it must be made available under this Agreement; and

2. a copy of this Agreement must be included with each copy of the Pro-
gram. Contributors may not remove or alter any copyright notices con-
tained within the Program. Each Contributor must identify itself as the
originator of its Contribution, if any, in a manner that reasonably allows
subsequent Recipients to identify the originator of the Contribution.

E.4 Commercial Distribution

Commercial distributors of software may accept certain responsibilities with
respect to end users, business partners and the like. While this license is in-
tended to facilitate the commercial use of the Program, the Contributor who
includes the Program in a commercial product offering should do so in a manner
which does not create potential liability for other Contributors. Therefore, if a
Contributor includes the Program in a commercial product offering, such Con-
tributor (“Commercial Contributor”) hereby agrees to defend and indemnify
every other Contributor (“Indemnified Contributor”) against any losses, dam-
ages and costs (collectively “Losses”) arising from claims, lawsuits and other
legal actions brought by a third party against the Indemnified Contributor to
the extent caused by the acts or omissions of such Commercial Contributor in
connection with its distribution of the Program in a commercial product of-
fering. The obligations in this section do not apply to any claims or Losses
relating to any actual or alleged intellectual property infringement. In order to
qualify, an Indemnified Contributor must: a) promptly notify the Commercial
Contributor in writing of such claim, and b) allow the Commercial Contributor
to control, and cooperate with the Commercial Contributor in, the defense and
any related settlement negotiations. The Indemnified Contributor may partici-
pate in any such claim at its own expense.

For example, a Contributor might include the Program in a commercial product
offering, Product X. That Contributor is then a Commercial Contributor. If that
Commercial Contributor then makes performance claims, or offers warranties

66 APPENDIX E. COMMON PUBLIC LICENSE VERSION 1.0

related to Product X, those performance claims and warranties are such Com-
mercial Contributor’s responsibility alone. Under this section, the Commercial
Contributor would have to defend claims against the other Contributors related
to those performance claims and warranties, and if a court requires any other
Contributor to pay any damages as a result, the Commercial Contributor must
pay those damages.

E.5 No Warranty

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PRO-
GRAM IS PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES
OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED IN-
CLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS
OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Each Recipient is solely responsible for
determining the appropriateness of using and distributing the Program and
assumes all risks associated with its exercise of rights under this Agreement,
including but not limited to the risks and costs of program errors, compliance
with applicable laws, damage to or loss of data, programs or equipment, and
unavailability or interruption of operations.

E.6 Disclaimer of Liability

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER
RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION
LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIA-
BILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (IN-
CLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OR DISTRIBUTION OF THE PROGRAM OR THE EXER-
CISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

E.7 General

If any provision of this Agreement is invalid or unenforceable under applicable
law, it shall not affect the validity or enforceability of the remainder of the terms
of this Agreement, and without further action by the parties hereto, such provi-
sion shall be reformed to the minimum extent necessary to make such provision
valid and enforceable.

If Recipient institutes patent litigation against a Contributor with respect to a
patent applicable to software (including a cross-claim or counterclaim in a law-
suit), then any patent licenses granted by that Contributor to such Recipient
under this Agreement shall terminate as of the date such litigation is filed. In
addition, if Recipient institutes patent litigation against any entity (including

E.7. GENERAL 67

a cross-claim or counterclaim in a lawsuit) alleging that the Program itself (ex-
cluding combinations of the Program with other software or hardware) infringes
such Recipient’s patent(s), then such Recipient’s rights granted under Section
2(b) shall terminate as of the date such litigation is filed.

All Recipient’s rights under this Agreement shall terminate if it fails to comply
with any of the material terms or conditions of this Agreement and does not
cure such failure in a reasonable period of time after becoming aware of such
noncompliance. If all Recipient’s rights under this Agreement terminate, Recip-
ient agrees to cease use and distribution of the Program as soon as reasonably
practicable. However, Recipient’s obligations under this Agreement and any li-
censes granted by Recipient relating to the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in
order to avoid inconsistency the Agreement is copyrighted and may only be
modified in the following manner. The Agreement Steward reserves the right
to publish new versions (including revisions) of this Agreement from time to
time. No one other than the Agreement Steward has the right to modify this
Agreement. IBM is the initial Agreement Steward. IBM may assign the respon-
sibility to serve as the Agreement Steward to a suitable separate entity. Each
new version of the Agreement will be given a distinguishing version number.
The Program (including Contributions) may always be distributed subject to
the version of the Agreement under which it was received. In addition, after a
new version of the Agreement is published, Contributor may elect to distribute
the Program (including its Contributions) under the new version. Except as
expressly stated in Sections 2(a) and 2(b) above, Recipient receives no rights or
licenses to the intellectual property of any Contributor under this Agreement,
whether expressly, by implication, estoppel or otherwise. All rights in the Pro-
gram not expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the
intellectual property laws of the United States of America. No party to this
Agreement will bring a legal action under this Agreement more than one year
after the cause of action arose. Each party waives its rights to a jury trial in
any resulting litigation.

	RexxHttp
	Table of contents
	1 Introduction
	1.1 Structure of this manual
	1.2 Contact information

	2 Installation guide
	2.1 Package contents
	2.2 Basic installation
	2.2.1 Install the support classes
	2.2.2 Install RexxHttp.rex
	2.2.3 Enable RexxHttp processing

	2.3 Advanced features
	2.3.1 Passing variables
	2.3.2 Customize the _TIMEZONE variable

	2.4 Specifying page compilers

	3 Rationale
	3.1 A very skippable historical note
	3.2 Design goals
	3.3 Design decisions and compromises
	3.3.1 Associating Rexx files with a Rexx handler in Apache
	3.3.2 Passing variables
	3.3.3 The problem of request values
	3.3.4 Netscape-style cookies and timezones

	4 Tutorial
	4.1 Introduction
	4.2 A ``Hello, world'' example
	4.3 A portable "Hello, world" example
	4.4 Output buffering and alternative syntax
	4.5 Retrieving GET/POST arguments
	4.6 Generating PDF output

	5 Class Reference
	5.1 The Http.Cookie class
	5.1.1 SETTIMEZONE (Class method)
	5.1.2 TIMEZONEOFFSET (Class method)
	5.1.3 INIT
	5.1.4 COMMENT
	5.1.5 COMMENT=
	5.1.6 DOMAIN
	5.1.7 DOMAIN=
	5.1.8 MAKESTRING
	5.1.9 MAX_AGE
	5.1.10 MAX_AGE=
	5.1.11 NAME
	5.1.12 PATH
	5.1.13 PATH=
	5.1.14 SECURE
	5.1.15 SECURE=
	5.1.16 VALUE
	5.1.17 VALUE=
	5.1.18 VERSION
	5.1.19 VERSION=

	5.2 The Http.OutputStream class
	5.2.1 INIT
	5.2.2 CLOSE
	5.2.3 FLUSH
	5.2.4 OPEN
	5.2.5 QUALIFY
	5.2.6 UNDERLYINGSTREAM

	5.3 The Http.Request class
	5.3.1 INIT
	5.3.2 []
	5.3.3 _variable
	5.3.4 ARG
	5.3.5 AUTH_TYPE
	5.3.6 CONTENT_LENGTH
	5.3.7 CONTENT_TYPE
	5.3.8 COOKIE
	5.3.9 DOCUMENT_ROOT
	5.3.10 FILENAME
	5.3.11 GATEWAY_INTERFACE
	5.3.12 HTTP_xxxx
	5.3.13 METHOD
	5.3.14 MOD_REXX
	5.3.15 PATH_INFO
	5.3.16 PATH_TRANSLATED
	5.3.17 POST_STRING
	5.3.18 QUERY_STRING
	5.3.19 REMOTE_ADDR
	5.3.20 REMOTE_HOST
	5.3.21 REMOTE_IDENT
	5.3.22 REMOTE_PORT
	5.3.23 REMOTE_USER
	5.3.24 REQUEST_METHOD
	5.3.25 REQUEST_POINTER
	5.3.26 REQUEST_URI
	5.3.27 SCRIPT_NAME
	5.3.28 SERVER_ADDR
	5.3.29 SERVER_ADMIN
	5.3.30 SERVER_NAME
	5.3.31 SERVER_PORT
	5.3.32 SERVER_PROTOCOL
	5.3.33 SERVER_SIGNATURE
	5.3.34 SERVER_SOFTWARE
	5.3.35 SERVLET_PROCESSOR
	5.3.36 SYSTEM_VERSION
	5.3.37 UNKNOWN
	5.3.38 UNPARSEDURI
	5.3.39 URI

	5.4 The Http.Response class
	5.4.1 INIT
	5.4.2 []
	5.4.3 []=
	5.4.4 ADDCOKIE
	5.4.5 COMMIT
	5.4.6 COMMITTED
	5.4.7 FLUSH
	5.4.8 OUTPUT
	5.4.9 UNKNOWN

	6 Writing portable servlets
	6.1 Portable input/output
	6.2 Portable POST request processing
	6.3 Portable request methods
	6.4 Portable variable passing

	7 Page compiler interface
	7.1 Page compilation interface

	Appendix A Running RexxHttp under OS/2
	Appendix B Running RexxHttp under Microsoft IIS
	Appendix C Running RSPCOMP under RexxHttp
	Appendix D Running REXXTAGS under RexxHttp
	Appendix E Common Public License Version 1.0
	E.1 Definitions
	E.2 Grant of Rights
	E.3 Requirements
	E.4 Commercial Distribution
	E.5 No Warranty
	E.6 Disclaimer of Liability
	E.7 General

