
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Search Order for External Files
34th International Rexx Language Symposium

Amsterdam, May 14-17

Josep Maria Blasco
jose.maria.blasco@gmail.com

EPBCN – ESPACIO PSICOANALÍTICO DE BARCELONA
C/ BALMES, 32, 2º 1ª — 08007 BARCELONA

May the 16th, 2023

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Search Order for External Files
Part I

Introduction: An anomaly
An anomaly in ooRexx

The search order for external files
Directories to search
Introducing same, curr and path
The anomaly

Reasons for the anomaly: a peek at the source code of the ooRexx interpreter
primitiveSearchName
hasDirectory

How to handle the anomaly
A bug, or a feature?
Deepening our understanding of the problem

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: An anomaly in ooRexx (1/4)
▶ We will start by studying an anomaly in ooRexx.

▶ The anomaly presents itself when calling a Rexx function located in an
external file:

Program.rex Routine.rex

Call Routine
...

.

.

.

Return

▶ The search order for external files uses a list of directories and a list of
extensions to locate the file.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: An anomaly in ooRexx (1/4)
▶ We will start by studying an anomaly in ooRexx.
▶ The anomaly presents itself when calling a Rexx function located in an

external file:
Program.rex Routine.rex

Call Routine
...

.

.

.

Return

▶ The search order for external files uses a list of directories and a list of
extensions to locate the file.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: An anomaly in ooRexx (1/4)
▶ We will start by studying an anomaly in ooRexx.
▶ The anomaly presents itself when calling a Rexx function located in an

external file:
Program.rex Routine.rex

Call Routine
...

.

.

.

Return

▶ The search order for external files uses a list of directories and a list of
extensions to locate the file.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: An anomaly in ooRexx (2/4)
▶ The searched directories are, in this order:

Program.rex "Routine.rex" can be found...

...in one of the following locations

Call Routine
...

.

.

.

Return

▶ (1) the same (or caller’s) directory;
▶ (2) the current directory;
▶ (3) an optional, application-defined path;
▶ (4) the contents of the REXX_PATH environment variable;
▶ (5) the contents of the PATH environment variable.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: An anomaly in ooRexx (2/4)
▶ The searched directories are, in this order:

Program.rex "Routine.rex" can be found...

(1) In the same directory

Call Routine
...

.

.

.

Return

▶ (1) the same (or caller’s) directory;

▶ (2) the current directory;
▶ (3) an optional, application-defined path;
▶ (4) the contents of the REXX_PATH environment variable;
▶ (5) the contents of the PATH environment variable.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: An anomaly in ooRexx (2/4)
▶ The searched directories are, in this order:

Program.rex "Routine.rex" can be found...

(2) In the current directory

Call Routine
...

.

.

.

Return

▶ (1) the same (or caller’s) directory;
▶ (2) the current directory;

▶ (3) an optional, application-defined path;
▶ (4) the contents of the REXX_PATH environment variable;
▶ (5) the contents of the PATH environment variable.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: An anomaly in ooRexx (2/4)
▶ The searched directories are, in this order:

Program.rex "Routine.rex" can be found...

(3) In the application-defined path

Call Routine
...

.

.

.

Return

▶ (1) the same (or caller’s) directory;
▶ (2) the current directory;
▶ (3) an optional, application-defined path;

▶ (4) the contents of the REXX_PATH environment variable;
▶ (5) the contents of the PATH environment variable.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: An anomaly in ooRexx (2/4)
▶ The searched directories are, in this order:

Program.rex "Routine.rex" can be found...

(4) In the REXX_PATH env. variable path

Call Routine
...

.

.

.

Return

▶ (1) the same (or caller’s) directory;
▶ (2) the current directory;
▶ (3) an optional, application-defined path;
▶ (4) the contents of the REXX_PATH environment variable;

▶ (5) the contents of the PATH environment variable.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: An anomaly in ooRexx (2/4)
▶ The searched directories are, in this order:

Program.rex "Routine.rex" can be found...

(5) In the PATH env. variable path

Call Routine
...

.

.

.

Return

▶ (1) the same (or caller’s) directory;
▶ (2) the current directory;
▶ (3) an optional, application-defined path;
▶ (4) the contents of the REXX_PATH environment variable;
▶ (5) the contents of the PATH environment variable.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: An anomaly in ooRexx (3/4)
▶ To simplify, and without loss of generality, we will assume that

Same directory Current directory App.-defined path REXX_PATH PATH
A directory A directory A path A Path A path

▶ PATH contains only one directory, called precisely path,
▶ the application-defined path is not set (or it is empty), and similarly
▶ the REXX_PATH environment variable is not set (or it is empty).
▶ Furthermore, let us assume that the same directory is indeed called same,
▶ and that the current directory is called curr.
▶ We will only have to examine three directories: same, curr and path.
▶ A Call Routine statement will search for Routine first in same, then in

curr, and then in path. If Routine is not found, a syntax error will be
raised.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: An anomaly in ooRexx (3/4)
▶ To simplify, and without loss of generality, we will assume that

Same directory Current directory App.-defined path REXX_PATH PATH
A directory A directory A path A Path path

▶ PATH contains only one directory, called precisely path,

▶ the application-defined path is not set (or it is empty), and similarly
▶ the REXX_PATH environment variable is not set (or it is empty).
▶ Furthermore, let us assume that the same directory is indeed called same,
▶ and that the current directory is called curr.
▶ We will only have to examine three directories: same, curr and path.
▶ A Call Routine statement will search for Routine first in same, then in

curr, and then in path. If Routine is not found, a syntax error will be
raised.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: An anomaly in ooRexx (3/4)
▶ To simplify, and without loss of generality, we will assume that

Same directory Current directory App.-defined path REXX_PATH PATH
A directory A directory (empty) A Path path

▶ PATH contains only one directory, called precisely path,
▶ the application-defined path is not set (or it is empty), and similarly

▶ the REXX_PATH environment variable is not set (or it is empty).
▶ Furthermore, let us assume that the same directory is indeed called same,
▶ and that the current directory is called curr.
▶ We will only have to examine three directories: same, curr and path.
▶ A Call Routine statement will search for Routine first in same, then in

curr, and then in path. If Routine is not found, a syntax error will be
raised.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: An anomaly in ooRexx (3/4)
▶ To simplify, and without loss of generality, we will assume that

Same directory Current directory App.-defined path REXX_PATH PATH
A directory A directory (empty) (empty) path

▶ PATH contains only one directory, called precisely path,
▶ the application-defined path is not set (or it is empty), and similarly
▶ the REXX_PATH environment variable is not set (or it is empty).

▶ Furthermore, let us assume that the same directory is indeed called same,
▶ and that the current directory is called curr.
▶ We will only have to examine three directories: same, curr and path.
▶ A Call Routine statement will search for Routine first in same, then in

curr, and then in path. If Routine is not found, a syntax error will be
raised.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: An anomaly in ooRexx (3/4)
▶ To simplify, and without loss of generality, we will assume that

Same directory Current directory App.-defined path REXX_PATH PATH
same A directory (empty) (empty) path

▶ PATH contains only one directory, called precisely path,
▶ the application-defined path is not set (or it is empty), and similarly
▶ the REXX_PATH environment variable is not set (or it is empty).
▶ Furthermore, let us assume that the same directory is indeed called same,

▶ and that the current directory is called curr.
▶ We will only have to examine three directories: same, curr and path.
▶ A Call Routine statement will search for Routine first in same, then in

curr, and then in path. If Routine is not found, a syntax error will be
raised.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: An anomaly in ooRexx (3/4)
▶ To simplify, and without loss of generality, we will assume that

Same directory Current directory App.-defined path REXX_PATH PATH
same curr (empty) (empty) path

▶ PATH contains only one directory, called precisely path,
▶ the application-defined path is not set (or it is empty), and similarly
▶ the REXX_PATH environment variable is not set (or it is empty).
▶ Furthermore, let us assume that the same directory is indeed called same,
▶ and that the current directory is called curr.

▶ We will only have to examine three directories: same, curr and path.
▶ A Call Routine statement will search for Routine first in same, then in

curr, and then in path. If Routine is not found, a syntax error will be
raised.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: An anomaly in ooRexx (3/4)
▶ To simplify, and without loss of generality, we will assume that

Same directory Current directory App.-defined path REXX_PATH PATH
same curr (empty) (empty) path

▶ PATH contains only one directory, called precisely path,
▶ the application-defined path is not set (or it is empty), and similarly
▶ the REXX_PATH environment variable is not set (or it is empty).
▶ Furthermore, let us assume that the same directory is indeed called same,
▶ and that the current directory is called curr.
▶ We will only have to examine three directories: same, curr and path.

▶ A Call Routine statement will search for Routine first in same, then in
curr, and then in path. If Routine is not found, a syntax error will be
raised.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: An anomaly in ooRexx (3/4)
▶ To simplify, and without loss of generality, we will assume that

Same directory Current directory App.-defined path REXX_PATH PATH
same curr (empty) (empty) path

▶ PATH contains only one directory, called precisely path,
▶ the application-defined path is not set (or it is empty), and similarly
▶ the REXX_PATH environment variable is not set (or it is empty).
▶ Furthermore, let us assume that the same directory is indeed called same,
▶ and that the current directory is called curr.
▶ We will only have to examine three directories: same, curr and path.
▶ A Call Routine statement will search for Routine first in same, then in

curr, and then in path. If Routine is not found, a syntax error will be
raised.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: An anomaly in ooRexx (4/4)
▶ Call Routine searches in same, curr, and then path.

▶ What happens if our statement is Call "lib/Routine" instead? We will
have to search for Routine in the "lib" subdirectory.

▶ In the "lib" subdirectory of what? — Of same, curr, and path. In
exactly the same way as when the statement is Call Routine.

▶ Now for the anomaly: when the instruction is Call "../Routine", we
should expect that "..", that is, the parent directory of same, curr, and
path would be searched.

▶ BUT in this case, only the current directory curr is searched.

Searched in... 1st 2nd 3rd
Call Routine same curr path
Call "lib/Routine" same curr path
Call "../Routine" curr

▶ Why?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: An anomaly in ooRexx (4/4)
▶ Call Routine searches in same, curr, and then path.
▶ What happens if our statement is Call "lib/Routine" instead? We will

have to search for Routine in the "lib" subdirectory.

▶ In the "lib" subdirectory of what? — Of same, curr, and path. In
exactly the same way as when the statement is Call Routine.

▶ Now for the anomaly: when the instruction is Call "../Routine", we
should expect that "..", that is, the parent directory of same, curr, and
path would be searched.

▶ BUT in this case, only the current directory curr is searched.

Searched in... 1st 2nd 3rd
Call Routine same curr path
Call "lib/Routine" ???? ???? ????
Call "../Routine" curr

▶ Why?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: An anomaly in ooRexx (4/4)
▶ Call Routine searches in same, curr, and then path.
▶ What happens if our statement is Call "lib/Routine" instead? We will

have to search for Routine in the "lib" subdirectory.
▶ In the "lib" subdirectory of what? — Of same, curr, and path. In

exactly the same way as when the statement is Call Routine.

▶ Now for the anomaly: when the instruction is Call "../Routine", we
should expect that "..", that is, the parent directory of same, curr, and
path would be searched.

▶ BUT in this case, only the current directory curr is searched.

Searched in... 1st 2nd 3rd
Call Routine same curr path
Call "lib/Routine" same curr path
Call "../Routine" curr

▶ Why?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: An anomaly in ooRexx (4/4)
▶ Call Routine searches in same, curr, and then path.
▶ What happens if our statement is Call "lib/Routine" instead? We will

have to search for Routine in the "lib" subdirectory.
▶ In the "lib" subdirectory of what? — Of same, curr, and path. In

exactly the same way as when the statement is Call Routine.
▶ Now for the anomaly: when the instruction is Call "../Routine", we

should expect that "..", that is, the parent directory of same, curr, and
path would be searched.

▶ BUT in this case, only the current directory curr is searched.

Searched in... 1st 2nd 3rd
Call Routine same curr path
Call "lib/Routine" same curr path
Call "../Routine" ???? ???? ????

▶ Why?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: An anomaly in ooRexx (4/4)
▶ Call Routine searches in same, curr, and then path.
▶ What happens if our statement is Call "lib/Routine" instead? We will

have to search for Routine in the "lib" subdirectory.
▶ In the "lib" subdirectory of what? — Of same, curr, and path. In

exactly the same way as when the statement is Call Routine.
▶ Now for the anomaly: when the instruction is Call "../Routine", we

should expect that "..", that is, the parent directory of same, curr, and
path would be searched.

▶ BUT in this case, only the current directory curr is searched.

Searched in... 1st 2nd 3rd
Call Routine same curr path
Call "lib/Routine" same curr path
Call "../Routine" same curr path

▶ Why?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: An anomaly in ooRexx (4/4)
▶ Call Routine searches in same, curr, and then path.
▶ What happens if our statement is Call "lib/Routine" instead? We will

have to search for Routine in the "lib" subdirectory.
▶ In the "lib" subdirectory of what? — Of same, curr, and path. In

exactly the same way as when the statement is Call Routine.
▶ Now for the anomaly: when the instruction is Call "../Routine", we

should expect that "..", that is, the parent directory of same, curr, and
path would be searched.

▶ BUT in this case, only the current directory curr is searched.

Searched in... 1st 2nd 3rd
Call Routine same curr path
Call "lib/Routine" same curr path
Call "../Routine" same curr path

▶ Why?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: Reasons for the anomaly (1/3)
▶ Why is this happening? Let’s take a look at the interpreter source code. In

the Unix version of SysFileSystem::primitiveSearchName, we find:
1 // do the direct search if this is qualified enough;
2 // if not, try to locate it along the path
3 if (hasDirectory(asIs) ?
4 checkCurrentFile(asIs, resolvedName) :
5 searchPath(asIs, path, resolvedName)
6)
7 {
8 return true;
9 }

▶ If the boolean function hasDirectory returns true, the path search is
bypassed.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: Reasons for the anomaly (1/3)
▶ Why is this happening? Let’s take a look at the interpreter source code. In

the Unix version of SysFileSystem::primitiveSearchName, we find:
1 // do the direct search if this is qualified enough;
2 // if not, try to locate it along the path
3 if (hasDirectory(asIs) ?
4 checkCurrentFile(asIs, resolvedName) :
5 searchPath(asIs, path, resolvedName)
6)
7 {
8 return true;
9 }

▶ If the boolean function hasDirectory returns true, the path search is
bypassed.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: Reasons for the anomaly (2/3)
▶ And what are the tests implemented by hasDirectory, exactly? Well, the

source reads as follows (name is the file name being examined):
1 // hasDirectory() means we have enough absolute directory
2 // information at the beginning to bypass performing path searches.
3 return name[0] == '~' || name[0] == '/' ||
4 (name[0] == '.' && name[1] == '/') ||
5 (name[0] == '.' && name[1] == '.' && name[2] == '/');

▶ But file names starting with "../" (or with "./", for that matter), are not
absolute, but relative!

▶ What is going on?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: Reasons for the anomaly (2/3)
▶ And what are the tests implemented by hasDirectory, exactly? Well, the

source reads as follows (name is the file name being examined):
1 // hasDirectory() means we have enough absolute directory
2 // information at the beginning to bypass performing path searches.
3 return name[0] == '~' || name[0] == '/' ||
4 (name[0] == '.' && name[1] == '/') ||
5 (name[0] == '.' && name[1] == '.' && name[2] == '/');

▶ But file names starting with "../" (or with "./", for that matter), are not
absolute, but relative!

▶ What is going on?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: Reasons for the anomaly (2/3)
▶ And what are the tests implemented by hasDirectory, exactly? Well, the

source reads as follows (name is the file name being examined):
1 // hasDirectory() means we have enough absolute directory
2 // information at the beginning to bypass performing path searches.
3 return name[0] == '~' || name[0] == '/' ||
4 (name[0] == '.' && name[1] == '/') ||
5 (name[0] == '.' && name[1] == '.' && name[2] == '/');

▶ But file names starting with "../" (or with "./", for that matter), are not
absolute, but relative!

▶ What is going on?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: Reasons for the anomaly (3/3)
▶ If we suppress the check for "../" and "./" in the Unix version of

hasDirectory, the interpreter starts to work as expected and as
documented. Additionally, all the tests in the test suite pass.1

▶ If, correspondingly, we suppress the check for "..\" and ".\" in the
Windows version of hasDirectory, the interpreter does not work as
expected and documented (it starts to produce unexpected results).

▶ The Unix version of the interpreter constructs the filenames manually, i.e.,
it collates the directories with the supplied filename. Contrary to that, the
Windows version resorts to the SearchPath Windows API.

▶ But SearchPath does not work as expected when the filename starts with
"..\" or ".\": it searches the current directory, but not the supplied path.

1I submitted a proof-of-concept patch to test it, see bug no. 1865.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: Reasons for the anomaly (3/3)
▶ If we suppress the check for "../" and "./" in the Unix version of

hasDirectory, the interpreter starts to work as expected and as
documented. Additionally, all the tests in the test suite pass.1

▶ If, correspondingly, we suppress the check for "..\" and ".\" in the
Windows version of hasDirectory, the interpreter does not work as
expected and documented (it starts to produce unexpected results).

▶ The Unix version of the interpreter constructs the filenames manually, i.e.,
it collates the directories with the supplied filename. Contrary to that, the
Windows version resorts to the SearchPath Windows API.

▶ But SearchPath does not work as expected when the filename starts with
"..\" or ".\": it searches the current directory, but not the supplied path.

1I submitted a proof-of-concept patch to test it, see bug no. 1865.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: Reasons for the anomaly (3/3)
▶ If we suppress the check for "../" and "./" in the Unix version of

hasDirectory, the interpreter starts to work as expected and as
documented. Additionally, all the tests in the test suite pass.1

▶ If, correspondingly, we suppress the check for "..\" and ".\" in the
Windows version of hasDirectory, the interpreter does not work as
expected and documented (it starts to produce unexpected results).

▶ The Unix version of the interpreter constructs the filenames manually, i.e.,
it collates the directories with the supplied filename. Contrary to that, the
Windows version resorts to the SearchPath Windows API.

▶ But SearchPath does not work as expected when the filename starts with
"..\" or ".\": it searches the current directory, but not the supplied path.

1I submitted a proof-of-concept patch to test it, see bug no. 1865.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: Reasons for the anomaly (3/3)
▶ If we suppress the check for "../" and "./" in the Unix version of

hasDirectory, the interpreter starts to work as expected and as
documented. Additionally, all the tests in the test suite pass.1

▶ If, correspondingly, we suppress the check for "..\" and ".\" in the
Windows version of hasDirectory, the interpreter does not work as
expected and documented (it starts to produce unexpected results).

▶ The Unix version of the interpreter constructs the filenames manually, i.e.,
it collates the directories with the supplied filename. Contrary to that, the
Windows version resorts to the SearchPath Windows API.

▶ But SearchPath does not work as expected when the filename starts with
"..\" or ".\": it searches the current directory, but not the supplied path.

1I submitted a proof-of-concept patch to test it, see bug no. 1865.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: Ways of handling the anomaly (1/2)
▶ A possibility is to stop using SearchPath in the Windows version of the

interpreter, and start constructing the filenames manually, like in the Unix
version.

▶ This would suppress the anomaly, but (1) it may conceivably break existing
programs, and (2) it would introduce new aspects of the interpreter
behavior that some users do not find “natural”.

▶ Another possibility is to decide that the interpreter works as intended, and
then document this anomaly as a feature.

▶ This has two disadvantages: (1) it’s asymmetrical (i.e., difficult to explain
and remember), and (2) it represents opting for a limitation, instead of
providing maximal freedom and letting the user limit herself.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: Ways of handling the anomaly (1/2)
▶ A possibility is to stop using SearchPath in the Windows version of the

interpreter, and start constructing the filenames manually, like in the Unix
version.

▶ This would suppress the anomaly, but (1) it may conceivably break existing
programs, and (2) it would introduce new aspects of the interpreter
behavior that some users do not find “natural”.

▶ Another possibility is to decide that the interpreter works as intended, and
then document this anomaly as a feature.

▶ This has two disadvantages: (1) it’s asymmetrical (i.e., difficult to explain
and remember), and (2) it represents opting for a limitation, instead of
providing maximal freedom and letting the user limit herself.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: Ways of handling the anomaly (1/2)
▶ A possibility is to stop using SearchPath in the Windows version of the

interpreter, and start constructing the filenames manually, like in the Unix
version.

▶ This would suppress the anomaly, but (1) it may conceivably break existing
programs, and (2) it would introduce new aspects of the interpreter
behavior that some users do not find “natural”.

▶ Another possibility is to decide that the interpreter works as intended, and
then document this anomaly as a feature.

▶ This has two disadvantages: (1) it’s asymmetrical (i.e., difficult to explain
and remember), and (2) it represents opting for a limitation, instead of
providing maximal freedom and letting the user limit herself.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: Ways of handling the anomaly (1/2)
▶ A possibility is to stop using SearchPath in the Windows version of the

interpreter, and start constructing the filenames manually, like in the Unix
version.

▶ This would suppress the anomaly, but (1) it may conceivably break existing
programs, and (2) it would introduce new aspects of the interpreter
behavior that some users do not find “natural”.

▶ Another possibility is to decide that the interpreter works as intended, and
then document this anomaly as a feature.

▶ This has two disadvantages: (1) it’s asymmetrical (i.e., difficult to explain
and remember), and (2) it represents opting for a limitation, instead of
providing maximal freedom and letting the user limit herself.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: Ways of handling the anomaly (2/2)
▶ It’s difficult to reach a decision. Several advanced users believed that the

interpreter behaves as one should expect by reading the documentation.

▶ Some other users (and in some cases, the same) expect that "." refers to
the current directory — a contradiction.

▶ Maybe we could look elsewhere to gather more data? We could take a
peek at how other interpreters work, and compare with ooRexx. We could,
in fact, take a look at other products and environments, too. Maybe there
is “a Rexx way of doing things” that we are not aware enough of, and this
“Rexx way” will emerge by itself, as we deepen our understanding of the
problem.

▶ To that purpose, we will implement and run a number of tests.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: Ways of handling the anomaly (2/2)
▶ It’s difficult to reach a decision. Several advanced users believed that the

interpreter behaves as one should expect by reading the documentation.
▶ Some other users (and in some cases, the same) expect that "." refers to

the current directory — a contradiction.

▶ Maybe we could look elsewhere to gather more data? We could take a
peek at how other interpreters work, and compare with ooRexx. We could,
in fact, take a look at other products and environments, too. Maybe there
is “a Rexx way of doing things” that we are not aware enough of, and this
“Rexx way” will emerge by itself, as we deepen our understanding of the
problem.

▶ To that purpose, we will implement and run a number of tests.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: Ways of handling the anomaly (2/2)
▶ It’s difficult to reach a decision. Several advanced users believed that the

interpreter behaves as one should expect by reading the documentation.
▶ Some other users (and in some cases, the same) expect that "." refers to

the current directory — a contradiction.
▶ Maybe we could look elsewhere to gather more data? We could take a

peek at how other interpreters work, and compare with ooRexx. We could,
in fact, take a look at other products and environments, too. Maybe there
is “a Rexx way of doing things” that we are not aware enough of, and this
“Rexx way” will emerge by itself, as we deepen our understanding of the
problem.

▶ To that purpose, we will implement and run a number of tests.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: Ways of handling the anomaly (2/2)
▶ It’s difficult to reach a decision. Several advanced users believed that the

interpreter behaves as one should expect by reading the documentation.
▶ Some other users (and in some cases, the same) expect that "." refers to

the current directory — a contradiction.
▶ Maybe we could look elsewhere to gather more data? We could take a

peek at how other interpreters work, and compare with ooRexx. We could,
in fact, take a look at other products and environments, too. Maybe there
is “a Rexx way of doing things” that we are not aware enough of, and this
“Rexx way” will emerge by itself, as we deepen our understanding of the
problem.

▶ To that purpose, we will implement and run a number of tests.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Search Order for External Files

Part II

Preparing the tests
Basic assumptions

Children and parents
Setting up files and directories
Interpreters and operating systems

Types of tests
Common tests
Drive-relative tests
Special tests
Format of a test results file
Two bugs we found

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preparing the tests: Basic assumptions
▶ To test other interpreters, we will continue to use the simplifying

assumptions stated above: there will be three designated directories, same,
curr, and path, and they will be checked in this order.

▶ Additionally, we will assume that each of these directories has a lib
subdirectory, i.e., that same/lib, curr/lib, and path/lib exist.

▶ We will also assume that we can count on the parent directories of the
three primary directories. We will call them dotdotsame, dotdotcurr,
and dotdotpath; same will be a subdirectory of dotdotsame, and so on.

▶ The three “dotdot” directories will be located in a subdirectory called
subdir, and subdir will in turn be located in our test directory.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preparing the tests: Basic assumptions
▶ To test other interpreters, we will continue to use the simplifying

assumptions stated above: there will be three designated directories, same,
curr, and path, and they will be checked in this order.

▶ Additionally, we will assume that each of these directories has a lib
subdirectory, i.e., that same/lib, curr/lib, and path/lib exist.

▶ We will also assume that we can count on the parent directories of the
three primary directories. We will call them dotdotsame, dotdotcurr,
and dotdotpath; same will be a subdirectory of dotdotsame, and so on.

▶ The three “dotdot” directories will be located in a subdirectory called
subdir, and subdir will in turn be located in our test directory.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preparing the tests: Basic assumptions
▶ To test other interpreters, we will continue to use the simplifying

assumptions stated above: there will be three designated directories, same,
curr, and path, and they will be checked in this order.

▶ Additionally, we will assume that each of these directories has a lib
subdirectory, i.e., that same/lib, curr/lib, and path/lib exist.

▶ We will also assume that we can count on the parent directories of the
three primary directories. We will call them dotdotsame, dotdotcurr,
and dotdotpath; same will be a subdirectory of dotdotsame, and so on.

▶ The three “dotdot” directories will be located in a subdirectory called
subdir, and subdir will in turn be located in our test directory.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preparing the tests: Basic assumptions
▶ To test other interpreters, we will continue to use the simplifying

assumptions stated above: there will be three designated directories, same,
curr, and path, and they will be checked in this order.

▶ Additionally, we will assume that each of these directories has a lib
subdirectory, i.e., that same/lib, curr/lib, and path/lib exist.

▶ We will also assume that we can count on the parent directories of the
three primary directories. We will call them dotdotsame, dotdotcurr,
and dotdotpath; same will be a subdirectory of dotdotsame, and so on.

▶ The three “dotdot” directories will be located in a subdirectory called
subdir, and subdir will in turn be located in our test directory.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preparing the tests: The directory structure
▶ This is the directory structure we will be using. The subdir subdirectory is

not really needed for the Rexx tests, but it will come in handy when testing
other environments.

Test directory

subdir

dotdotpath

path

lib

dotdotcurr

curr

lib

dotdotsame

same

lib

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preparing the tests: Populating directories
▶ We will place a small Rexx program in all testable directories. Every

program returns its own name. For example, same.rex returns the string
"same".

Test directory

subdir

dotdotpath

path

lib

pathlib.rex

curr.rex

dotdotpath.rex

dotdotcurr

curr

lib

currlib.rex

curr.rex

dotdotcurr.rex

dotdotsame

same

lib

samelib.rex

same.rex

dotdotsame.rex

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preparing the tests: Where to place the tests
▶ The test initiator program, sotest.rex will be located in the test directory.

▶ After doing some housekeeping, like setting the current directory to
subdir/dotdotcurr/curr, it will call the real test program, main.rex,
located in the same directory.

Test directory [sotest.rex resides here]

subdir

dotdotpath

path

lib

pathlib.rex

path.rex

dotdotpath.rex

dotdotcurr

curr

lib

currlib.rex

curr.rex

dotdotcurr.rex

dotdotsame

same

lib

samelib.rex

same.rexmain.rex

dotdotsame.rex

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preparing the tests: Where to place the tests
▶ The test initiator program, sotest.rex will be located in the test directory.
▶ After doing some housekeeping, like setting the current directory to

subdir/dotdotcurr/curr, it will call the real test program, main.rex,
located in the same directory.

Test directory [sotest.rex resides here]

subdir

dotdotpath

path

lib

pathlib.rex

path.rex

dotdotpath.rex

dotdotcurr

curr

lib

currlib.rex

curr.rex

dotdotcurr.rex

dotdotsame

same

lib

samelib.rex

same.rexmain.rex

dotdotsame.rex

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Interpreters and operating systems

Operating system Interpreter Version string
OS/2 4.52 Classic Rexx REXXSAA 4.00 3 Feb 1999
(ArcaOS 5.0.7) Object Rexx OBJREXX 6.00 18 May 1999

Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
Ubuntu 22.04.01 Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
LTS ooRexx REXX-ooRexx_5.0.0(MT)_64-bit 6.05 23 Dec 2022
Windows 11 Pro Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
10.0.22621.1413 ooRexx REXX-ooRexx_5.1.0(MT)_64-bit 6.05 10 Mar 2023

▶ Operating systems

▶ Interpreters

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Interpreters and operating systems

Operating system Interpreter Version string
OS/2 4.52 Classic Rexx REXXSAA 4.00 3 Feb 1999
(ArcaOS 5.0.7) Object Rexx OBJREXX 6.00 18 May 1999

Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
Ubuntu 22.04.01 Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
LTS ooRexx REXX-ooRexx_5.0.0(MT)_64-bit 6.05 23 Dec 2022
Windows 11 Pro Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
10.0.22621.1413 ooRexx REXX-ooRexx_5.1.0(MT)_64-bit 6.05 10 Mar 2023

▶ Operating systems: OS/2

▶ Interpreters

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Interpreters and operating systems

Operating system Interpreter Version string
OS/2 4.52 Classic Rexx REXXSAA 4.00 3 Feb 1999
(ArcaOS 5.0.7) Object Rexx OBJREXX 6.00 18 May 1999

Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
Ubuntu 22.04.01 Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
LTS ooRexx REXX-ooRexx_5.0.0(MT)_64-bit 6.05 23 Dec 2022
Windows 11 Pro Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
10.0.22621.1413 ooRexx REXX-ooRexx_5.1.0(MT)_64-bit 6.05 10 Mar 2023

▶ Operating systems: OS/2 , Ubuntu

▶ Interpreters

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Interpreters and operating systems

Operating system Interpreter Version string
OS/2 4.52 Classic Rexx REXXSAA 4.00 3 Feb 1999
(ArcaOS 5.0.7) Object Rexx OBJREXX 6.00 18 May 1999

Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
Ubuntu 22.04.01 Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
LTS ooRexx REXX-ooRexx_5.0.0(MT)_64-bit 6.05 23 Dec 2022
Windows 11 Pro Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
10.0.22621.1413 ooRexx REXX-ooRexx_5.1.0(MT)_64-bit 6.05 10 Mar 2023

▶ Operating systems: OS/2 , Ubuntu and Windows.

▶ Interpreters

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Interpreters and operating systems

Operating system Interpreter Version string
OS/2 4.52 Classic Rexx REXXSAA 4.00 3 Feb 1999
(ArcaOS 5.0.7) Object Rexx OBJREXX 6.00 18 May 1999

Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
Ubuntu 22.04.01 Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
LTS ooRexx REXX-ooRexx_5.0.0(MT)_64-bit 6.05 23 Dec 2022
Windows 11 Pro Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
10.0.22621.1413 ooRexx REXX-ooRexx_5.1.0(MT)_64-bit 6.05 10 Mar 2023

▶ Operating systems: OS/2 , Ubuntu and Windows.
▶ Interpreters

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Interpreters and operating systems

Operating system Interpreter Version string
OS/2 4.52 Classic Rexx REXXSAA 4.00 3 Feb 1999
(ArcaOS 5.0.7) Object Rexx OBJREXX 6.00 18 May 1999

Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
Ubuntu 22.04.01 Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
LTS ooRexx REXX-ooRexx_5.0.0(MT)_64-bit 6.05 23 Dec 2022
Windows 11 Pro Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
10.0.22621.1413 ooRexx REXX-ooRexx_5.1.0(MT)_64-bit 6.05 10 Mar 2023

▶ Operating systems: OS/2 , Ubuntu and Windows.
▶ Interpreters : Classic Rexx

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Interpreters and operating systems

Operating system Interpreter Version string
OS/2 4.52 Classic Rexx REXXSAA 4.00 3 Feb 1999
(ArcaOS 5.0.7) Object Rexx OBJREXX 6.00 18 May 1999

Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
Ubuntu 22.04.01 Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
LTS ooRexx REXX-ooRexx_5.0.0(MT)_64-bit 6.05 23 Dec 2022
Windows 11 Pro Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
10.0.22621.1413 ooRexx REXX-ooRexx_5.1.0(MT)_64-bit 6.05 10 Mar 2023

▶ Operating systems: OS/2 , Ubuntu and Windows.
▶ Interpreters : Classic Rexx, Object Rexx

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Interpreters and operating systems

Operating system Interpreter Version string
OS/2 4.52 Classic Rexx REXXSAA 4.00 3 Feb 1999
(ArcaOS 5.0.7) Object Rexx OBJREXX 6.00 18 May 1999

Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
Ubuntu 22.04.01 Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
LTS ooRexx REXX-ooRexx_5.0.0(MT)_64-bit 6.05 23 Dec 2022
Windows 11 Pro Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
10.0.22621.1413 ooRexx REXX-ooRexx_5.1.0(MT)_64-bit 6.05 10 Mar 2023

▶ Operating systems: OS/2 , Ubuntu and Windows.
▶ Interpreters : Classic Rexx, Object Rexx, Regina Rexx

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Interpreters and operating systems

Operating system Interpreter Version string
OS/2 4.52 Classic Rexx REXXSAA 4.00 3 Feb 1999
(ArcaOS 5.0.7) Object Rexx OBJREXX 6.00 18 May 1999

Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
Ubuntu 22.04.01 Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
LTS ooRexx REXX-ooRexx_5.0.0(MT)_64-bit 6.05 23 Dec 2022
Windows 11 Pro Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
10.0.22621.1413 ooRexx REXX-ooRexx_5.1.0(MT)_64-bit 6.05 10 Mar 2023

▶ Operating systems: OS/2 , Ubuntu and Windows.
▶ Interpreters : Classic Rexx, Object Rexx, Regina Rexx, ooRexx.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Interpreters and operating systems

Operating system Interpreter Version string
OS/2 4.52 Classic Rexx REXXSAA 4.00 3 Feb 1999
(ArcaOS 5.0.7) Object Rexx OBJREXX 6.00 18 May 1999

Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
Ubuntu 22.04.01 Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
LTS ooRexx REXX-ooRexx_5.0.0(MT)_64-bit 6.05 23 Dec 2022
Windows 11 Pro Regina Rexx REXX-Regina_3.9.5 5.00 25 Jun 2022
10.0.22621.1413 ooRexx REXX-ooRexx_5.1.0(MT)_64-bit 6.05 10 Mar 2023

▶ Operating systems: OS/2 , Ubuntu and Windows.
▶ Interpreters : Classic Rexx, Object Rexx, Regina Rexx, ooRexx.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Types of tests
1 Common tests 2 Drive-relative tests 3 Special tests

▶ We will run three types of tests.

▶ Common tests will apply to all interpreters and operating systems.
▶ Drive-relative tests will only apply to operating systems that use drive

letters (i.e., to OS/2 and Windows).
▶ Special tests will allow us to compare the behavior of Rexx to other

products and environments.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Types of tests
1 Common tests 2 Drive-relative tests 3 Special tests

▶ We will run three types of tests.
▶ Common tests will apply to all interpreters and operating systems.

▶ Drive-relative tests will only apply to operating systems that use drive
letters (i.e., to OS/2 and Windows).

▶ Special tests will allow us to compare the behavior of Rexx to other
products and environments.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Types of tests
1 Common tests 2 Drive-relative tests 3 Special tests

▶ We will run three types of tests.
▶ Common tests will apply to all interpreters and operating systems.
▶ Drive-relative tests will only apply to operating systems that use drive

letters (i.e., to OS/2 and Windows).

▶ Special tests will allow us to compare the behavior of Rexx to other
products and environments.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Types of tests
1 Common tests 2 Drive-relative tests 3 Special tests

▶ We will run three types of tests.
▶ Common tests will apply to all interpreters and operating systems.
▶ Drive-relative tests will only apply to operating systems that use drive

letters (i.e., to OS/2 and Windows).
▶ Special tests will allow us to compare the behavior of Rexx to other

products and environments.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Common tests
1 Common tests 2 Drive-relative tests 3 Special tests

1. Simple calls: same.rex, curr.rex, and path.rex.

2. Downward-relative calls: "lib/samelib.rex", etc.

3. Dot-relative calls: "./same.rex", etc.

4. Upward-relative calls: "../dotdotsame.rex", etc.

5. Upward-relative calls with a trick: "lib/../../dotdotsame.rex", etc.

▶ In all cases we will call the same program with and without an extension.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Common tests
1 Common tests 2 Drive-relative tests 3 Special tests

1. Simple calls: same.rex, curr.rex, and path.rex.

2. Downward-relative calls: "lib/samelib.rex", etc.

3. Dot-relative calls: "./same.rex", etc.

4. Upward-relative calls: "../dotdotsame.rex", etc.

5. Upward-relative calls with a trick: "lib/../../dotdotsame.rex", etc.

▶ In all cases we will call the same program with and without an extension.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Common tests
1 Common tests 2 Drive-relative tests 3 Special tests

1. Simple calls: same.rex, curr.rex, and path.rex.

2. Downward-relative calls: "lib/samelib.rex", etc.

3. Dot-relative calls: "./same.rex", etc.

4. Upward-relative calls: "../dotdotsame.rex", etc.

5. Upward-relative calls with a trick: "lib/../../dotdotsame.rex", etc.

▶ In all cases we will call the same program with and without an extension.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Common tests
1 Common tests 2 Drive-relative tests 3 Special tests

1. Simple calls: same.rex, curr.rex, and path.rex.

2. Downward-relative calls: "lib/samelib.rex", etc.

3. Dot-relative calls: "./same.rex", etc.

4. Upward-relative calls: "../dotdotsame.rex", etc.

5. Upward-relative calls with a trick: "lib/../../dotdotsame.rex", etc.

▶ In all cases we will call the same program with and without an extension.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Common tests
1 Common tests 2 Drive-relative tests 3 Special tests

1. Simple calls: same.rex, curr.rex, and path.rex.

2. Downward-relative calls: "lib/samelib.rex", etc.

3. Dot-relative calls: "./same.rex", etc.

4. Upward-relative calls: "../dotdotsame.rex", etc.

5. Upward-relative calls with a trick: "lib/../../dotdotsame.rex", etc.

▶ In all cases we will call the same program with and without an extension.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Common tests
1 Common tests 2 Drive-relative tests 3 Special tests

1. Simple calls: same.rex, curr.rex, and path.rex.

2. Downward-relative calls: "lib/samelib.rex", etc.

3. Dot-relative calls: "./same.rex", etc.

4. Upward-relative calls: "../dotdotsame.rex", etc.

5. Upward-relative calls with a trick: "lib/../../dotdotsame.rex", etc.

▶ In all cases we will call the same program with and without an extension.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Drive-relative tests
1 Common tests 2 Drive-relative tests 3 Special tests

To run these tests, we will need to assign new drive letters to some of our
directories. We can do that using the SUBST command under Windows, but
under OS/2 we will have to assign drive letters by external means.

1. Backslash-relative calls: calling "\path\to\my.rex" is relative to the
different drives present in the super-path.

2. Letter-relative calls: calling "D:my.rex" is relative to the current directory
of the D: drive (every drive has a current directory under Windows and
OS/2).

3. Drive-absolute calls: using absolute filenames with different drive letters.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Drive-relative tests
1 Common tests 2 Drive-relative tests 3 Special tests

To run these tests, we will need to assign new drive letters to some of our
directories. We can do that using the SUBST command under Windows, but
under OS/2 we will have to assign drive letters by external means.

1. Backslash-relative calls: calling "\path\to\my.rex" is relative to the
different drives present in the super-path.

2. Letter-relative calls: calling "D:my.rex" is relative to the current directory
of the D: drive (every drive has a current directory under Windows and
OS/2).

3. Drive-absolute calls: using absolute filenames with different drive letters.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Drive-relative tests
1 Common tests 2 Drive-relative tests 3 Special tests

To run these tests, we will need to assign new drive letters to some of our
directories. We can do that using the SUBST command under Windows, but
under OS/2 we will have to assign drive letters by external means.

1. Backslash-relative calls: calling "\path\to\my.rex" is relative to the
different drives present in the super-path.

2. Letter-relative calls: calling "D:my.rex" is relative to the current directory
of the D: drive (every drive has a current directory under Windows and
OS/2).

3. Drive-absolute calls: using absolute filenames with different drive letters.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Special tests
1 Common tests 2 Drive-relative tests 3 Special tests

These tests allow us to widen our perspective by comparing the behavior of the
various Rexx interpreters to the behavior of different products and environments.

1. CMD.EXE: We will test the behavior of the CMD.EXE Command Line
Interpreter under Windows (test included in sotest.rex).

2. SearchPath: We will test the behavior of the SearchPath Windows API
(test included in sotest.rex).

3. C/C++ compilers: We will test the behavior of the GNU gcc compiler and
of the Microsoft Visual Studio cl compiler.

4. Python: We will test the behavior of the pathlib module.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Special tests
1 Common tests 2 Drive-relative tests 3 Special tests

These tests allow us to widen our perspective by comparing the behavior of the
various Rexx interpreters to the behavior of different products and environments.

1. CMD.EXE: We will test the behavior of the CMD.EXE Command Line
Interpreter under Windows (test included in sotest.rex).

2. SearchPath: We will test the behavior of the SearchPath Windows API
(test included in sotest.rex).

3. C/C++ compilers: We will test the behavior of the GNU gcc compiler and
of the Microsoft Visual Studio cl compiler.

4. Python: We will test the behavior of the pathlib module.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Special tests
1 Common tests 2 Drive-relative tests 3 Special tests

These tests allow us to widen our perspective by comparing the behavior of the
various Rexx interpreters to the behavior of different products and environments.

1. CMD.EXE: We will test the behavior of the CMD.EXE Command Line
Interpreter under Windows (test included in sotest.rex).

2. SearchPath: We will test the behavior of the SearchPath Windows API
(test included in sotest.rex).

3. C/C++ compilers: We will test the behavior of the GNU gcc compiler and
of the Microsoft Visual Studio cl compiler.

4. Python: We will test the behavior of the pathlib module.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Special tests
1 Common tests 2 Drive-relative tests 3 Special tests

These tests allow us to widen our perspective by comparing the behavior of the
various Rexx interpreters to the behavior of different products and environments.

1. CMD.EXE: We will test the behavior of the CMD.EXE Command Line
Interpreter under Windows (test included in sotest.rex).

2. SearchPath: We will test the behavior of the SearchPath Windows API
(test included in sotest.rex).

3. C/C++ compilers: We will test the behavior of the GNU gcc compiler and
of the Microsoft Visual Studio cl compiler.

4. Python: We will test the behavior of the pathlib module.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Format of a test results file [fragments]
1 /**
2 sotest.rex -- A Search Order test suite
3
4 Interpreter: REXX-ooRexx_5.0.0(MT)_64-bit 6.05 23 Dec 2022
5 Operating system: LINUX
…

11 The following values have been set:
12
13 Same directory: '/home/sam/sotest/subdir/dotdotsame/same'
14 Current directory: '/home/sam/sotest/subdir/dotdotcurr/curr'
15 Path: '/home/sam/sotest/subdir/dotdotpath/path'
…

19 **/
20 Pass.1 = .true; Pass.1.test = 'same'
21 Pass.2 = .true; Pass.2.test = 'same.rex'
…

48 Pass.29 = .true; Pass.29.test = 'lib/../../dotdotpath'
49 Pass.30 = .true; Pass.30.test = 'lib/../../dotdotpath.rex'
50 Pass.0 = 30
51 Return Pass.

▶ Test results are themselves programs. When called, they return a stem.
This allows for easy comparisons, tabulations, etc.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Two bugs
Our tests have unveiled bugs in two different interpreters.

1. The Windows version of ooRexx has a very subtle bug: when a filename
has (1) no extension and (2) a dot in a directory (for example,
"my.dir\file", or "..\file"), the interpreter erroneously thinks that it
has an extension, and therefore no additional extensions are tested.2

2. The REXXSAA interpreter does not search “in the current directory, with the
current extension” and later “along environment PATH, with the current
extension”, as documented. We will refer to this bug as “the SAA bug”.

3. The test results have been amended according to the bugs: the REXXSAA
results have been patched as if the SAA bug did not exist, and the tests for
ooRexx under Windows have been run again with the patched interpreter.

2I have reported this bug (SourceForge bug no. 1870), and provided a fix and an additional
test, which were committed on March the 10th 2023 (r12651).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Two bugs
Our tests have unveiled bugs in two different interpreters.

1. The Windows version of ooRexx has a very subtle bug: when a filename
has (1) no extension and (2) a dot in a directory (for example,
"my.dir\file", or "..\file"), the interpreter erroneously thinks that it
has an extension, and therefore no additional extensions are tested.2

2. The REXXSAA interpreter does not search “in the current directory, with the
current extension” and later “along environment PATH, with the current
extension”, as documented. We will refer to this bug as “the SAA bug”.

3. The test results have been amended according to the bugs: the REXXSAA
results have been patched as if the SAA bug did not exist, and the tests for
ooRexx under Windows have been run again with the patched interpreter.

2I have reported this bug (SourceForge bug no. 1870), and provided a fix and an additional
test, which were committed on March the 10th 2023 (r12651).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Two bugs
Our tests have unveiled bugs in two different interpreters.

1. The Windows version of ooRexx has a very subtle bug: when a filename
has (1) no extension and (2) a dot in a directory (for example,
"my.dir\file", or "..\file"), the interpreter erroneously thinks that it
has an extension, and therefore no additional extensions are tested.2

2. The REXXSAA interpreter does not search “in the current directory, with the
current extension” and later “along environment PATH, with the current
extension”, as documented. We will refer to this bug as “the SAA bug”.

3. The test results have been amended according to the bugs: the REXXSAA
results have been patched as if the SAA bug did not exist, and the tests for
ooRexx under Windows have been run again with the patched interpreter.

2I have reported this bug (SourceForge bug no. 1870), and provided a fix and an additional
test, which were committed on March the 10th 2023 (r12651).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Search Order for External Files

Part III

Interpreting the results
Classifying and interpreting the results

Common tests: the equivalence classes
Drive-relative tests
Special tests

Finally, is there a Rexx way of doing things?
A quick perspective
To continue learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Classifying common tests: The equivalence classes

1 REXXSAA/Regina/CMD.EXE 2 Object Rexx 3 ooRexx/SearchPath

▶ Common tests results form three equivalence classes.

▶ The first class includes the REXXSAA (“Classic Rexx”) interpreter for
OS/2 (with the effect of the SAA bug manually amended), the three
versions of the Regina Rexx interpreter, and the Windows CMD.EXE
Command Line Interpreter.

▶ The only element of the second class is the Object Rexx interpreter for
OS/2.

▶ To the third class belong the ooRexx interpreter (with the hasExtension
bug fixed) and the SearchPath Windows API.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Classifying common tests: The equivalence classes

1 REXXSAA/Regina/CMD.EXE 2 Object Rexx 3 ooRexx/SearchPath

▶ Common tests results form three equivalence classes.
▶ The first class includes the REXXSAA (“Classic Rexx”) interpreter for

OS/2 (with the effect of the SAA bug manually amended), the three
versions of the Regina Rexx interpreter, and the Windows CMD.EXE
Command Line Interpreter.

▶ The only element of the second class is the Object Rexx interpreter for
OS/2.

▶ To the third class belong the ooRexx interpreter (with the hasExtension
bug fixed) and the SearchPath Windows API.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Classifying common tests: The equivalence classes

1 REXXSAA/Regina/CMD.EXE 2 Object Rexx 3 ooRexx/SearchPath

▶ Common tests results form three equivalence classes.
▶ The first class includes the REXXSAA (“Classic Rexx”) interpreter for

OS/2 (with the effect of the SAA bug manually amended), the three
versions of the Regina Rexx interpreter, and the Windows CMD.EXE
Command Line Interpreter.

▶ The only element of the second class is the Object Rexx interpreter for
OS/2.

▶ To the third class belong the ooRexx interpreter (with the hasExtension
bug fixed) and the SearchPath Windows API.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Classifying common tests: The equivalence classes

1 REXXSAA/Regina/CMD.EXE 2 Object Rexx 3 ooRexx/SearchPath

▶ Common tests results form three equivalence classes.
▶ The first class includes the REXXSAA (“Classic Rexx”) interpreter for

OS/2 (with the effect of the SAA bug manually amended), the three
versions of the Regina Rexx interpreter, and the Windows CMD.EXE
Command Line Interpreter.

▶ The only element of the second class is the Object Rexx interpreter for
OS/2.

▶ To the third class belong the ooRexx interpreter (with the hasExtension
bug fixed) and the SearchPath Windows API.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Class 1: REXXSAA, Regina and CMD.EXE

1 REXXSAA/Regina/CMD.EXE 2 Object Rexx 3 ooRexx/SearchPath

▶ The differentiating characteristics of this class are the following:

▶ There is no notion of the “same” directory. The only interpreter that uses
it is ooRexx. The same concept is also used in other environments, for
example in some C/C++ compilers.

▶ As soon as the supplied filename includes a separator character ("\" or
"/"), only the current directory is checked, and all path searches are
bypassed.

▶ This is the most restrictive behavior, which should not be surprising since
REXXSAA and Regina are older than Object Rexx and ooRexx.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Class 1: REXXSAA, Regina and CMD.EXE

1 REXXSAA/Regina/CMD.EXE 2 Object Rexx 3 ooRexx/SearchPath

▶ The differentiating characteristics of this class are the following:
▶ There is no notion of the “same” directory. The only interpreter that uses

it is ooRexx. The same concept is also used in other environments, for
example in some C/C++ compilers.

▶ As soon as the supplied filename includes a separator character ("\" or
"/"), only the current directory is checked, and all path searches are
bypassed.

▶ This is the most restrictive behavior, which should not be surprising since
REXXSAA and Regina are older than Object Rexx and ooRexx.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Class 1: REXXSAA, Regina and CMD.EXE

1 REXXSAA/Regina/CMD.EXE 2 Object Rexx 3 ooRexx/SearchPath

▶ The differentiating characteristics of this class are the following:
▶ There is no notion of the “same” directory. The only interpreter that uses

it is ooRexx. The same concept is also used in other environments, for
example in some C/C++ compilers.

▶ As soon as the supplied filename includes a separator character ("\" or
"/"), only the current directory is checked, and all path searches are
bypassed.

▶ This is the most restrictive behavior, which should not be surprising since
REXXSAA and Regina are older than Object Rexx and ooRexx.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Class 1: REXXSAA, Regina and CMD.EXE

1 REXXSAA/Regina/CMD.EXE 2 Object Rexx 3 ooRexx/SearchPath

▶ The differentiating characteristics of this class are the following:
▶ There is no notion of the “same” directory. The only interpreter that uses

it is ooRexx. The same concept is also used in other environments, for
example in some C/C++ compilers.

▶ As soon as the supplied filename includes a separator character ("\" or
"/"), only the current directory is checked, and all path searches are
bypassed.

▶ This is the most restrictive behavior, which should not be surprising since
REXXSAA and Regina are older than Object Rexx and ooRexx.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Class 2: Object Rexx for OS/2

1 REXXSAA/Regina/CMD.EXE 2 Object Rexx 3 ooRexx/SearchPath

▶ The differentiating characteristics of this class are the following:

▶ Similarly to REXXSAA and Regina Rexx, Object Rexx does not have a
concept of the “same” directory. Files are only checked against the current
directory and the path. This puts it on the restrictive side.

▶ On the other hand, Object Rexx does not have any limitation regarding
filenames that start with ".\" or "..\": it checks them against the
current directory and, if not found, against all the directories contained in
the PATH environment variable. In this sense, it is the most advanced
interpreter in the whole set.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Class 2: Object Rexx for OS/2

1 REXXSAA/Regina/CMD.EXE 2 Object Rexx 3 ooRexx/SearchPath

▶ The differentiating characteristics of this class are the following:
▶ Similarly to REXXSAA and Regina Rexx, Object Rexx does not have a

concept of the “same” directory. Files are only checked against the current
directory and the path. This puts it on the restrictive side.

▶ On the other hand, Object Rexx does not have any limitation regarding
filenames that start with ".\" or "..\": it checks them against the
current directory and, if not found, against all the directories contained in
the PATH environment variable. In this sense, it is the most advanced
interpreter in the whole set.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Class 2: Object Rexx for OS/2

1 REXXSAA/Regina/CMD.EXE 2 Object Rexx 3 ooRexx/SearchPath

▶ The differentiating characteristics of this class are the following:
▶ Similarly to REXXSAA and Regina Rexx, Object Rexx does not have a

concept of the “same” directory. Files are only checked against the current
directory and the path. This puts it on the restrictive side.

▶ On the other hand, Object Rexx does not have any limitation regarding
filenames that start with ".\" or "..\": it checks them against the
current directory and, if not found, against all the directories contained in
the PATH environment variable. In this sense, it is the most advanced
interpreter in the whole set.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Class 3: ooRexx and the SearchPath Windows API

1 REXXSAA/Regina/CMD.EXE 2 Object Rexx 3 ooRexx/SearchPath

▶ The differentiating characteristics of this class are the following:

▶ There is a concept of the “same” directory. As we mentioned earlier, this
concept, in the Rexx world, is unique to ooRexx, although it can be found
in other environmens.

▶ Filenames are checked against the same, current and (extended) path
directories, but the path (and same) searches are bypassed when the
filename starts with ".\" or "..\". This is undocumented behavior.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Class 3: ooRexx and the SearchPath Windows API

1 REXXSAA/Regina/CMD.EXE 2 Object Rexx 3 ooRexx/SearchPath

▶ The differentiating characteristics of this class are the following:
▶ There is a concept of the “same” directory. As we mentioned earlier, this

concept, in the Rexx world, is unique to ooRexx, although it can be found
in other environmens.

▶ Filenames are checked against the same, current and (extended) path
directories, but the path (and same) searches are bypassed when the
filename starts with ".\" or "..\". This is undocumented behavior.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Class 3: ooRexx and the SearchPath Windows API

1 REXXSAA/Regina/CMD.EXE 2 Object Rexx 3 ooRexx/SearchPath

▶ The differentiating characteristics of this class are the following:
▶ There is a concept of the “same” directory. As we mentioned earlier, this

concept, in the Rexx world, is unique to ooRexx, although it can be found
in other environmens.

▶ Filenames are checked against the same, current and (extended) path
directories, but the path (and same) searches are bypassed when the
filename starts with ".\" or "..\". This is undocumented behavior.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Classifying drive-relative tests: Python’s role (1/2)
▶ When one writes "\path\to.file" in the Windows or OS/2 CLI, this is a

relative filename. Relative to what? To the current drive, e.g., if the current
directory is "E:\dir1\dir2", the drive part of this directory ("E:") is
concatenated to the supplied filename, and one gets "E:\path\to.file".

▶ What should it mean, in this case, that the “same” directory is checked
before the current directory? It could well mean the following: if the same
directory is "S:\dir3", we extract the drive part ("S:") and we
concatenate it to the supplied filename, to get "S:\path\to.file", and
similarly for all the directories in the different paths.

▶ Currently, no Rexx interpreter exhibits such a behavior, but Python’s
pathlib module does: for Python, Path("D:/test") / "/this/file"
(under Windows) is WindowsPath('D:/this/file').

▶ Is this behavior desirable for Rexx?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Classifying drive-relative tests: Python’s role (1/2)
▶ When one writes "\path\to.file" in the Windows or OS/2 CLI, this is a

relative filename. Relative to what? To the current drive, e.g., if the current
directory is "E:\dir1\dir2", the drive part of this directory ("E:") is
concatenated to the supplied filename, and one gets "E:\path\to.file".

▶ What should it mean, in this case, that the “same” directory is checked
before the current directory? It could well mean the following: if the same
directory is "S:\dir3", we extract the drive part ("S:") and we
concatenate it to the supplied filename, to get "S:\path\to.file", and
similarly for all the directories in the different paths.

▶ Currently, no Rexx interpreter exhibits such a behavior, but Python’s
pathlib module does: for Python, Path("D:/test") / "/this/file"
(under Windows) is WindowsPath('D:/this/file').

▶ Is this behavior desirable for Rexx?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Classifying drive-relative tests: Python’s role (1/2)
▶ When one writes "\path\to.file" in the Windows or OS/2 CLI, this is a

relative filename. Relative to what? To the current drive, e.g., if the current
directory is "E:\dir1\dir2", the drive part of this directory ("E:") is
concatenated to the supplied filename, and one gets "E:\path\to.file".

▶ What should it mean, in this case, that the “same” directory is checked
before the current directory? It could well mean the following: if the same
directory is "S:\dir3", we extract the drive part ("S:") and we
concatenate it to the supplied filename, to get "S:\path\to.file", and
similarly for all the directories in the different paths.

▶ Currently, no Rexx interpreter exhibits such a behavior, but Python’s
pathlib module does: for Python, Path("D:/test") / "/this/file"
(under Windows) is WindowsPath('D:/this/file').

▶ Is this behavior desirable for Rexx?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Classifying drive-relative tests: Python’s role (1/2)
▶ When one writes "\path\to.file" in the Windows or OS/2 CLI, this is a

relative filename. Relative to what? To the current drive, e.g., if the current
directory is "E:\dir1\dir2", the drive part of this directory ("E:") is
concatenated to the supplied filename, and one gets "E:\path\to.file".

▶ What should it mean, in this case, that the “same” directory is checked
before the current directory? It could well mean the following: if the same
directory is "S:\dir3", we extract the drive part ("S:") and we
concatenate it to the supplied filename, to get "S:\path\to.file", and
similarly for all the directories in the different paths.

▶ Currently, no Rexx interpreter exhibits such a behavior, but Python’s
pathlib module does: for Python, Path("D:/test") / "/this/file"
(under Windows) is WindowsPath('D:/this/file').

▶ Is this behavior desirable for Rexx?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Classifying drive-relative tests: Python’s role (2/2)
▶ Similarly, when one writes "D:path\to.file", this is a relative filename.

Relative to what? To the current directory of the ("D:") drive. If that is
"D:\dir", then we get "D:\dir\path\to.file".

▶ What should it mean, in this case, that the “same” directory is checked
before the current directory? It could well mean the following: if the same
directory was "D:\dir2", we could construct "D:\dir2\path\to.file",
and similarly for all the directories in the different paths (when the drive
letter would not match, the current drive and directory would be used).

▶ Currently, no Rexx interpreter exhibits such a behavior, but Python’s
pathlib module does: for Python, Path("D:/this/is") /
"D:a/long/path" (under Windows) is
WindowsPath('D:/this/is/a/long/path').

▶ Is this behavior desirable for Rexx?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Classifying drive-relative tests: Python’s role (2/2)
▶ Similarly, when one writes "D:path\to.file", this is a relative filename.

Relative to what? To the current directory of the ("D:") drive. If that is
"D:\dir", then we get "D:\dir\path\to.file".

▶ What should it mean, in this case, that the “same” directory is checked
before the current directory? It could well mean the following: if the same
directory was "D:\dir2", we could construct "D:\dir2\path\to.file",
and similarly for all the directories in the different paths (when the drive
letter would not match, the current drive and directory would be used).

▶ Currently, no Rexx interpreter exhibits such a behavior, but Python’s
pathlib module does: for Python, Path("D:/this/is") /
"D:a/long/path" (under Windows) is
WindowsPath('D:/this/is/a/long/path').

▶ Is this behavior desirable for Rexx?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Classifying drive-relative tests: Python’s role (2/2)
▶ Similarly, when one writes "D:path\to.file", this is a relative filename.

Relative to what? To the current directory of the ("D:") drive. If that is
"D:\dir", then we get "D:\dir\path\to.file".

▶ What should it mean, in this case, that the “same” directory is checked
before the current directory? It could well mean the following: if the same
directory was "D:\dir2", we could construct "D:\dir2\path\to.file",
and similarly for all the directories in the different paths (when the drive
letter would not match, the current drive and directory would be used).

▶ Currently, no Rexx interpreter exhibits such a behavior, but Python’s
pathlib module does: for Python, Path("D:/this/is") /
"D:a/long/path" (under Windows) is
WindowsPath('D:/this/is/a/long/path').

▶ Is this behavior desirable for Rexx?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Classifying drive-relative tests: Python’s role (2/2)
▶ Similarly, when one writes "D:path\to.file", this is a relative filename.

Relative to what? To the current directory of the ("D:") drive. If that is
"D:\dir", then we get "D:\dir\path\to.file".

▶ What should it mean, in this case, that the “same” directory is checked
before the current directory? It could well mean the following: if the same
directory was "D:\dir2", we could construct "D:\dir2\path\to.file",
and similarly for all the directories in the different paths (when the drive
letter would not match, the current drive and directory would be used).

▶ Currently, no Rexx interpreter exhibits such a behavior, but Python’s
pathlib module does: for Python, Path("D:/this/is") /
"D:a/long/path" (under Windows) is
WindowsPath('D:/this/is/a/long/path').

▶ Is this behavior desirable for Rexx?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Special tests
▶ We have already examined the behavior of CMD.EXE, the SearchPath

Windows API, and Python’s pathlib module.

▶ If we now examine the behavior of the #include directive in C/C++
(both for gcc and cl), we will see that all the comon tests pass.

▶ C/C++ uses the concept of the same directory, and has no problems wih
dot-relative or upward relative filenames (indeed they are quite common,
although there are religious wars about their convenience).

▶ This should mean something to us: #include and ::requires play
similar roles.

▶ As a curiosity, the concept of sameness in Visual Studio is recursive.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Special tests
▶ We have already examined the behavior of CMD.EXE, the SearchPath

Windows API, and Python’s pathlib module.
▶ If we now examine the behavior of the #include directive in C/C++

(both for gcc and cl), we will see that all the comon tests pass.

▶ C/C++ uses the concept of the same directory, and has no problems wih
dot-relative or upward relative filenames (indeed they are quite common,
although there are religious wars about their convenience).

▶ This should mean something to us: #include and ::requires play
similar roles.

▶ As a curiosity, the concept of sameness in Visual Studio is recursive.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Special tests
▶ We have already examined the behavior of CMD.EXE, the SearchPath

Windows API, and Python’s pathlib module.
▶ If we now examine the behavior of the #include directive in C/C++

(both for gcc and cl), we will see that all the comon tests pass.
▶ C/C++ uses the concept of the same directory, and has no problems wih

dot-relative or upward relative filenames (indeed they are quite common,
although there are religious wars about their convenience).

▶ This should mean something to us: #include and ::requires play
similar roles.

▶ As a curiosity, the concept of sameness in Visual Studio is recursive.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Special tests
▶ We have already examined the behavior of CMD.EXE, the SearchPath

Windows API, and Python’s pathlib module.
▶ If we now examine the behavior of the #include directive in C/C++

(both for gcc and cl), we will see that all the comon tests pass.
▶ C/C++ uses the concept of the same directory, and has no problems wih

dot-relative or upward relative filenames (indeed they are quite common,
although there are religious wars about their convenience).

▶ This should mean something to us: #include and ::requires play
similar roles.

▶ As a curiosity, the concept of sameness in Visual Studio is recursive.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Special tests
▶ We have already examined the behavior of CMD.EXE, the SearchPath

Windows API, and Python’s pathlib module.
▶ If we now examine the behavior of the #include directive in C/C++

(both for gcc and cl), we will see that all the comon tests pass.
▶ C/C++ uses the concept of the same directory, and has no problems wih

dot-relative or upward relative filenames (indeed they are quite common,
although there are religious wars about their convenience).

▶ This should mean something to us: #include and ::requires play
similar roles.

▶ As a curiosity, the concept of sameness in Visual Studio is recursive.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Finally, is there a Rexx way of doing things? (1/2)
▶ After examining the results of our tests, I do not think we have enough

elements to support the idea that there is “a Rexx way of doing things” for
external search.

▶ What we can see is a slow (and sometimes hesitant) evolution from a more
limited scripting language paradigm to a full programming language
paradigm.

▶ Older versions fall in the scripting language side. That is probably the
reason why their behavior is the same as the Command Line Interpreter.

▶ Object Rexx makes the jump to the full language paradigm, and it
incorporates constructs found in other programming languages.

▶ ooRexx goes one step beyond (with the concept of the “same” directory),
and then backpedals when handling the ".\" or "..\" cases.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Finally, is there a Rexx way of doing things? (1/2)
▶ After examining the results of our tests, I do not think we have enough

elements to support the idea that there is “a Rexx way of doing things” for
external search.

▶ What we can see is a slow (and sometimes hesitant) evolution from a more
limited scripting language paradigm to a full programming language
paradigm.

▶ Older versions fall in the scripting language side. That is probably the
reason why their behavior is the same as the Command Line Interpreter.

▶ Object Rexx makes the jump to the full language paradigm, and it
incorporates constructs found in other programming languages.

▶ ooRexx goes one step beyond (with the concept of the “same” directory),
and then backpedals when handling the ".\" or "..\" cases.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Finally, is there a Rexx way of doing things? (1/2)
▶ After examining the results of our tests, I do not think we have enough

elements to support the idea that there is “a Rexx way of doing things” for
external search.

▶ What we can see is a slow (and sometimes hesitant) evolution from a more
limited scripting language paradigm to a full programming language
paradigm.

▶ Older versions fall in the scripting language side. That is probably the
reason why their behavior is the same as the Command Line Interpreter.

▶ Object Rexx makes the jump to the full language paradigm, and it
incorporates constructs found in other programming languages.

▶ ooRexx goes one step beyond (with the concept of the “same” directory),
and then backpedals when handling the ".\" or "..\" cases.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Finally, is there a Rexx way of doing things? (1/2)
▶ After examining the results of our tests, I do not think we have enough

elements to support the idea that there is “a Rexx way of doing things” for
external search.

▶ What we can see is a slow (and sometimes hesitant) evolution from a more
limited scripting language paradigm to a full programming language
paradigm.

▶ Older versions fall in the scripting language side. That is probably the
reason why their behavior is the same as the Command Line Interpreter.

▶ Object Rexx makes the jump to the full language paradigm, and it
incorporates constructs found in other programming languages.

▶ ooRexx goes one step beyond (with the concept of the “same” directory),
and then backpedals when handling the ".\" or "..\" cases.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Finally, is there a Rexx way of doing things? (1/2)
▶ After examining the results of our tests, I do not think we have enough

elements to support the idea that there is “a Rexx way of doing things” for
external search.

▶ What we can see is a slow (and sometimes hesitant) evolution from a more
limited scripting language paradigm to a full programming language
paradigm.

▶ Older versions fall in the scripting language side. That is probably the
reason why their behavior is the same as the Command Line Interpreter.

▶ Object Rexx makes the jump to the full language paradigm, and it
incorporates constructs found in other programming languages.

▶ ooRexx goes one step beyond (with the concept of the “same” directory),
and then backpedals when handling the ".\" or "..\" cases.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Finally, is there a Rexx way of doing things? (2/2)
▶ Maybe there is no “Rexx way of doing things” for external search, but we

have learned many things!

▶ And maybe by expanding our understanding still more, we will be able to
come to a set of insights and decisions:

▶ A decision concerning the ooRexx anomaly, and
▶ A set of recommendations for a future Rexx standard (Language level 7?).
▶ And, in general, new knowledge for the RexxLA Architecture Review Board

(ARB) to ponder.
▶ This might be very useful for new implementations and variants of Rexx.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Finally, is there a Rexx way of doing things? (2/2)
▶ Maybe there is no “Rexx way of doing things” for external search, but we

have learned many things!
▶ And maybe by expanding our understanding still more, we will be able to

come to a set of insights and decisions:

▶ A decision concerning the ooRexx anomaly, and
▶ A set of recommendations for a future Rexx standard (Language level 7?).
▶ And, in general, new knowledge for the RexxLA Architecture Review Board

(ARB) to ponder.
▶ This might be very useful for new implementations and variants of Rexx.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Finally, is there a Rexx way of doing things? (2/2)
▶ Maybe there is no “Rexx way of doing things” for external search, but we

have learned many things!
▶ And maybe by expanding our understanding still more, we will be able to

come to a set of insights and decisions:
▶ A decision concerning the ooRexx anomaly, and

▶ A set of recommendations for a future Rexx standard (Language level 7?).
▶ And, in general, new knowledge for the RexxLA Architecture Review Board

(ARB) to ponder.
▶ This might be very useful for new implementations and variants of Rexx.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Finally, is there a Rexx way of doing things? (2/2)
▶ Maybe there is no “Rexx way of doing things” for external search, but we

have learned many things!
▶ And maybe by expanding our understanding still more, we will be able to

come to a set of insights and decisions:
▶ A decision concerning the ooRexx anomaly, and
▶ A set of recommendations for a future Rexx standard (Language level 7?).

▶ And, in general, new knowledge for the RexxLA Architecture Review Board
(ARB) to ponder.

▶ This might be very useful for new implementations and variants of Rexx.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Finally, is there a Rexx way of doing things? (2/2)
▶ Maybe there is no “Rexx way of doing things” for external search, but we

have learned many things!
▶ And maybe by expanding our understanding still more, we will be able to

come to a set of insights and decisions:
▶ A decision concerning the ooRexx anomaly, and
▶ A set of recommendations for a future Rexx standard (Language level 7?).
▶ And, in general, new knowledge for the RexxLA Architecture Review Board

(ARB) to ponder.

▶ This might be very useful for new implementations and variants of Rexx.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Finally, is there a Rexx way of doing things? (2/2)
▶ Maybe there is no “Rexx way of doing things” for external search, but we

have learned many things!
▶ And maybe by expanding our understanding still more, we will be able to

come to a set of insights and decisions:
▶ A decision concerning the ooRexx anomaly, and
▶ A set of recommendations for a future Rexx standard (Language level 7?).
▶ And, in general, new knowledge for the RexxLA Architecture Review Board

(ARB) to ponder.
▶ This might be very useful for new implementations and variants of Rexx.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Search Order for External Files

Part IV

Modeling external search algorithms
The ontological question: What is an external search algorithm?

Locations and qualifiers
Location-first and qualifier-first algorithms. Location exception clauses.
Qualifier exception clauses. The composition algorithm

A system of classes to model external search algorithms

A proof-of concept prototype for a pluggable external search algorithms system

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What is an external search algorithm? (1/3)
▶ To expand our understanding of external search, we have to address the

ontological question: What is an external search algorithm?

▶ We will have to identify the aspects that are common to all the search
algorithms (or, at least, to the algorithms we are studying).

▶ For example, all the algorithms manage a list of locations (e.g., directories)
and a list of qualifiers (e.g., file extensions).

▶ [We use the term “location” instead of “directory” to be able to
accommodate, in the future, operating systems where the fundamental file
collection unit is not a directory (for example, VM minidisks), and similarly
for “qualifiers”, which will be extensions under Windows, for example but
may be filetypes and filemodes under VM.]

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What is an external search algorithm? (1/3)
▶ To expand our understanding of external search, we have to address the

ontological question: What is an external search algorithm?
▶ We will have to identify the aspects that are common to all the search

algorithms (or, at least, to the algorithms we are studying).

▶ For example, all the algorithms manage a list of locations (e.g., directories)
and a list of qualifiers (e.g., file extensions).

▶ [We use the term “location” instead of “directory” to be able to
accommodate, in the future, operating systems where the fundamental file
collection unit is not a directory (for example, VM minidisks), and similarly
for “qualifiers”, which will be extensions under Windows, for example but
may be filetypes and filemodes under VM.]

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What is an external search algorithm? (1/3)
▶ To expand our understanding of external search, we have to address the

ontological question: What is an external search algorithm?
▶ We will have to identify the aspects that are common to all the search

algorithms (or, at least, to the algorithms we are studying).
▶ For example, all the algorithms manage a list of locations (e.g., directories)

and a list of qualifiers (e.g., file extensions).

▶ [We use the term “location” instead of “directory” to be able to
accommodate, in the future, operating systems where the fundamental file
collection unit is not a directory (for example, VM minidisks), and similarly
for “qualifiers”, which will be extensions under Windows, for example but
may be filetypes and filemodes under VM.]

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What is an external search algorithm? (1/3)
▶ To expand our understanding of external search, we have to address the

ontological question: What is an external search algorithm?
▶ We will have to identify the aspects that are common to all the search

algorithms (or, at least, to the algorithms we are studying).
▶ For example, all the algorithms manage a list of locations (e.g., directories)

and a list of qualifiers (e.g., file extensions).
▶ [We use the term “location” instead of “directory” to be able to

accommodate, in the future, operating systems where the fundamental file
collection unit is not a directory (for example, VM minidisks), and similarly
for “qualifiers”, which will be extensions under Windows, for example but
may be filetypes and filemodes under VM.]

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What is an external search algorithm? (2/3)
▶ Some algorithms are location-first (i.e., they search for all qualifiers in a

given location, and then proceed to the next location), and some others are
qualifier-first (they look for a qualifier in all the locations, and then they
proceed with the next qualifier).

▶ [For example, Regina Rexx is directory-first, while ooRexx is extension-first.]
▶ Most algorithms have a location exception clause: when the filename to

search for has a certain form, not all locations are checked, but only a
designated subset of those.

▶ [For example, Regina Rexx limits its search to the current directory as soon
as it finds a separator like "/" in the filename, while the ooRexx location
exception algorithm is much more nuanced (and partially undocumented).]

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What is an external search algorithm? (2/3)
▶ Some algorithms are location-first (i.e., they search for all qualifiers in a

given location, and then proceed to the next location), and some others are
qualifier-first (they look for a qualifier in all the locations, and then they
proceed with the next qualifier).

▶ [For example, Regina Rexx is directory-first, while ooRexx is extension-first.]

▶ Most algorithms have a location exception clause: when the filename to
search for has a certain form, not all locations are checked, but only a
designated subset of those.

▶ [For example, Regina Rexx limits its search to the current directory as soon
as it finds a separator like "/" in the filename, while the ooRexx location
exception algorithm is much more nuanced (and partially undocumented).]

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What is an external search algorithm? (2/3)
▶ Some algorithms are location-first (i.e., they search for all qualifiers in a

given location, and then proceed to the next location), and some others are
qualifier-first (they look for a qualifier in all the locations, and then they
proceed with the next qualifier).

▶ [For example, Regina Rexx is directory-first, while ooRexx is extension-first.]
▶ Most algorithms have a location exception clause: when the filename to

search for has a certain form, not all locations are checked, but only a
designated subset of those.

▶ [For example, Regina Rexx limits its search to the current directory as soon
as it finds a separator like "/" in the filename, while the ooRexx location
exception algorithm is much more nuanced (and partially undocumented).]

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What is an external search algorithm? (2/3)
▶ Some algorithms are location-first (i.e., they search for all qualifiers in a

given location, and then proceed to the next location), and some others are
qualifier-first (they look for a qualifier in all the locations, and then they
proceed with the next qualifier).

▶ [For example, Regina Rexx is directory-first, while ooRexx is extension-first.]
▶ Most algorithms have a location exception clause: when the filename to

search for has a certain form, not all locations are checked, but only a
designated subset of those.

▶ [For example, Regina Rexx limits its search to the current directory as soon
as it finds a separator like "/" in the filename, while the ooRexx location
exception algorithm is much more nuanced (and partially undocumented).]

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What is an external search algorithm? (3/3)
▶ Similarly, most algorithms include a qualifier exception clause: depending

on the form of the filename, only a designated subset of the qualifiers is
checked.

▶ [For example, Regina Rexx does not try to add an extension when the file
has a known extension (that is, one of the predefined extensions, or one of
the extensions supplied in the REGINA_SUFFIXES environment variable).
For ooRexx the test is much simpler: if the filename contains a dot ("."),
then no extensions are added.]

▶ Every search algorithm defines a composition algorithm that combines a
certain location, a certain filename and a certain qualifier (which may be
empty) and produces a list of (hopefully absolute) file names.

▶ [For example, the Unix-like version of ooRexx tries the supplied filename
as-is, and then, if different, in lowercase.]

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What is an external search algorithm? (3/3)
▶ Similarly, most algorithms include a qualifier exception clause: depending

on the form of the filename, only a designated subset of the qualifiers is
checked.

▶ [For example, Regina Rexx does not try to add an extension when the file
has a known extension (that is, one of the predefined extensions, or one of
the extensions supplied in the REGINA_SUFFIXES environment variable).
For ooRexx the test is much simpler: if the filename contains a dot ("."),
then no extensions are added.]

▶ Every search algorithm defines a composition algorithm that combines a
certain location, a certain filename and a certain qualifier (which may be
empty) and produces a list of (hopefully absolute) file names.

▶ [For example, the Unix-like version of ooRexx tries the supplied filename
as-is, and then, if different, in lowercase.]

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What is an external search algorithm? (3/3)
▶ Similarly, most algorithms include a qualifier exception clause: depending

on the form of the filename, only a designated subset of the qualifiers is
checked.

▶ [For example, Regina Rexx does not try to add an extension when the file
has a known extension (that is, one of the predefined extensions, or one of
the extensions supplied in the REGINA_SUFFIXES environment variable).
For ooRexx the test is much simpler: if the filename contains a dot ("."),
then no extensions are added.]

▶ Every search algorithm defines a composition algorithm that combines a
certain location, a certain filename and a certain qualifier (which may be
empty) and produces a list of (hopefully absolute) file names.

▶ [For example, the Unix-like version of ooRexx tries the supplied filename
as-is, and then, if different, in lowercase.]

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What is an external search algorithm? (3/3)
▶ Similarly, most algorithms include a qualifier exception clause: depending

on the form of the filename, only a designated subset of the qualifiers is
checked.

▶ [For example, Regina Rexx does not try to add an extension when the file
has a known extension (that is, one of the predefined extensions, or one of
the extensions supplied in the REGINA_SUFFIXES environment variable).
For ooRexx the test is much simpler: if the filename contains a dot ("."),
then no extensions are added.]

▶ Every search algorithm defines a composition algorithm that combines a
certain location, a certain filename and a certain qualifier (which may be
empty) and produces a list of (hopefully absolute) file names.

▶ [For example, the Unix-like version of ooRexx tries the supplied filename
as-is, and then, if different, in lowercase.]

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Modeling external search algorithms (1/3)
▶ We have written a set of External Search classes to model the behavior of

the different interpreters and environments. Instances are created by
providing a class-specific set of parameters. Once initialized, they provide a
search method that resolves a filename according to the specified external
search algorithm.

/* Our base class will be an abstract class... */
::Class ExternalSearch Public Abstract
/* ...with two direct subclasses, also abstract. */
::Class QualifierFirstExternalSearch Subclass ExternalSearch Public
::Class LocationFirstExternalSearch Subclass ExternalSearch Public
/* ooRexx external search is extension- (qualifier-)first */
::Class ooRexxExternalSearch Subclass QualifierFirstExternalSearch Public
/* Regina Rexx external search is location- (directory-)first */
::Class ReginaRexxExternalSearch Subclass LocationFirstExternalSearch Public

mySearch = ReginaRexxExternalSearch~new /* This sequence is equivalent to */
myRoutine = mySearch~search(Routine) /* "Call Routine args", but */
.Routine~newFile(myRoutine)~call(args) /* with the Regina search order */

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Modeling external search algorithms (2/3)
▶ External search objects can be instantiated with their default values, which

are those documented in the respective manuals
1 mySearch = ooRexxExternalSearch~new /* Default values */

▶ Or they can be fully customized at object creation time..
1 mySearch = ooRexxExternalSearch~new(-
2 (- /* Directories, */
3 "same=<same directory>", -
4 "current=<current directory>", -
5 "application=<application-defined path>", - /* paths, and */
6 "rexx_path=<path>", -
7 "path=<path>", -
8), -
9 (- /* extensions */

10 "same=<same extension>", -
11 "application=<application-defined extensions>", -
12) -
13)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Modeling external search algorithms (2/3)
▶ External search objects can be instantiated with their default values, which

are those documented in the respective manuals
1 mySearch = ooRexxExternalSearch~new /* Default values */

▶ Or they can be fully customized at object creation time..
1 mySearch = ooRexxExternalSearch~new(-
2 (- /* Directories, */
3 "same=<same directory>", -
4 "current=<current directory>", -
5 "application=<application-defined path>", - /* paths, and */
6 "rexx_path=<path>", -
7 "path=<path>", -
8), -
9 (- /* extensions */

10 "same=<same extension>", -
11 "application=<application-defined extensions>", -
12) -
13)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Modeling external search algorithms (3/3)
▶ Every search algorithm class has to be instantiated with its own set of

class-specific parameters.
1 mySearch = ReginaRexxExternalSearch~new(-
2 (-
3 "regina_macros=<path>", - /* Paths, */
4 "current=<current directory>", - /* directories */
5 "path=<path>", - /* and */
6), -
7 (- /* extensions */
8 "same=<same extension>", -
9 "regina_suffixes=<list>", -

10) -
11)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The composition operation. Advanced modeling
▶ The compose method of ExternalSearch takes as arguments a directory,

a filename and a possibly empty extension, and attempts to compose them
into a (hopefully absolute) filename. This operation is not so simple as it
may seem at first glance, because it has to consider the cases where the
filename may itself be absolute, the directory part can be relative, and so
on.

▶ ExternalSearch has a settable boolean attribute called driveRelative,
with a default value of .false. When driveRelative is .true, the
composition operation is slightly modified, so that drive-relative filenames
are resolved like in the pathlib Python module. This is experimental at
the moment.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The composition operation. Advanced modeling
▶ The compose method of ExternalSearch takes as arguments a directory,

a filename and a possibly empty extension, and attempts to compose them
into a (hopefully absolute) filename. This operation is not so simple as it
may seem at first glance, because it has to consider the cases where the
filename may itself be absolute, the directory part can be relative, and so
on.

▶ ExternalSearch has a settable boolean attribute called driveRelative,
with a default value of .false. When driveRelative is .true, the
composition operation is slightly modified, so that drive-relative filenames
are resolved like in the pathlib Python module. This is experimental at
the moment.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Class ooRexxEnhancedExternalSearch
▶ Class ooRexxEnhancedExternalSearch fixes the anomaly by removing

the checks for ".\" and "..\", and by additionally setting
driveRelative to .true. All 48 tests pass when we use this enhanced
external search algorithm.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Pluggable external search algorithms: a prototype
▶ Using the security manager feature of ooRexx, we have devised an

experimental system of pluggable external search order algorithms. This is
implemented, as a proof-of-concept, by the "[]=" class method of the
ExternalSearch class. The following code fragment illustrates the
technique.

1 /* To be able to plug a security manager, we need a Routine object */
2 routine = .Routine~newFile("/path/to/my/program.rex")
3
4 /* Routine will be called, but with our enhanced search order in effect */
5 .ExternalSearch[routine] = .ooRexxEnhancedExternalSearch
6
7 /* Now call our routine with the appropriate parameters. Every CALL */
8 /* in "program.rex" will be resolved according to the Rexx Enhanced */
9 /* External Search algorithm. */

10 routine~call(parameters)
11
12 ::Requires ExternalSearch

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Pluggable external search algorithms: a prototype
▶ This technique allows to run the sotest.rex test program against a

number of different external search algorithms, without having to switch
interpreters or operating systems.

1 program = "D:\Dropbox\ooRexx\sotest\sotest.rex" /* Maybe */
2 routine = .Routine~newFile(program)
3 /* Install the Regina search order using the ooRexx security manager */
4 .ExternalSearch[routine] = .ReginaRexxExternalSearch
5 /* All programs called from sotest.rex will be searched using the */
6 /* Regina search order algorithm */
7 routine~call()
8
9 ::Requires ExternalSearch

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Search Order for External Files

Part V

Appendices
Further work
Acknowledgements
Questions?
References

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Further work

▶ Drive-relative tests need more work.
▶ Study what happens when the components of a path are themselves

relative (i.e., “dir”).
▶ Can our algorithms be adapted to the the z/VM world? To z/OS? To

z/VSE?...
▶ Improve the security manager integration (but see bug #1886).
▶ ...

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Acknowledgements (1/2)
▶ I would like to start by thanking Joan Batet, Lisa Mc Connell, Silvina Fernández, Xavier

Navarro, Joel Padulles, David Palau and Francesc Rosés, who have contributed to
enhance this document by patiently reading several drafts, finding typos, indicating
paragraphs that were unclear, and suggesting all kinds of corrections and enhancements.

▶ To Erich Steinböck, who pointed me to the relevant parts of the interpreter code to
continue my investigation.

▶ To Rony G. Flatscher, who was especially kind and encouraging, and patiently
introduced me to the arcanes of preparing and submitting documentation, code and test
patches for ooRexx.

▶ To René Vincent Jansen, who invited me to participate in the RexxLA Architecture
Advisory Council, a.k.a Architecture Review Board (ARB), and provided resources in the
GitHub rexx-repository of RexxLA for me to store my programs, test results, etc.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Acknowledgements (2/2)

▶ To the members of the Architecture Review Board itself, for their critical comments and
encouragement.

▶ To my colleagues at Espacio Psicoanalítico de Barcelona, for bearing with me while I
submerged myself in this research, listening to my musings, and being loving and
supportive.

▶ To the participants of the different mailing lists, especially the ARB list, the developers
list, and the RexxLA list.

▶ To the Rexx Language Association, for stimulating my creativity.
▶ And of course to the ooRexx developers, for maintaining and enhancing a wonderful

version of the Rexx language.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Questions?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

References

▶ Most of the material covered here is addressed in more detail in the
companion document, The Search Order for External Files,
https://www.epbcn.com/pdf/josep-maria-blasco/
2023-05-16-The-search-order-for-external-rexx-files.pdf.

▶ The test programs, result sets, etc, can be downloaded from the
https://github.com/RexxLA/rexx-repository/tree/master/ARB/
standards/work-in-progress/search-order GitHub directory and
from
http://www.epbcn.com/pdf/josep-maria-blasco/2023-05-16/.

https://www.epbcn.com/pdf/josep-maria-blasco/2023-05-16-The-search-order-for-external-rexx-files.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2023-05-16-The-search-order-for-external-rexx-files.pdf
https://github.com/RexxLA/rexx-repository/tree/master/ARB/standards/work-in-progress/search-order
https://github.com/RexxLA/rexx-repository/tree/master/ARB/standards/work-in-progress/search-order
http://www.epbcn.com/pdf/josep-maria-blasco/2023-05-16/

	Introduction
	An anomaly in ooRexx
	The search order for external files
	Directories to search
	Introducing same, curr and path
	The anomaly

	Reasons for the anomaly: a peek at the source code of the ooRexx interpreter
	primitiveSearchName
	hasDirectory

	How to handle the anomaly
	A bug, or a feature?
	Deepening our understanding of the problem

	Preparing the tests
	Basic assumptions
	Children and parents
	Setting up files and directories
	Interpreters and operating systems

	Types of tests
	Common tests
	Drive-relative tests
	Special tests
	Format of a test results file
	Two bugs we found

	Interpreting the results
	Classifying and interpreting the results
	Common tests: the equivalence classes
	Drive-relative tests
	Special tests

	Finally, is there a Rexx way of doing things?
	A quick perspective
	To continue learning

	Modeling external search algorithms
	The ontological question: What is an external search algorithm?
	Locations and qualifiers
	Location-first and qualifier-first algorithms. Location exception clauses.
	Qualifier exception clauses. The composition algorithm

	A system of classes to model external search algorithms
	A proof-of concept prototype for a pluggable external search algorithms system

	Appendices
	Further work
	Acknowledgements
	Questions?
	References

