
The Unicode Tools Of Rexx∗

Josep Maria Blasco
Espacio Psicoanalítico de Barcelona

Balmes, 32, 2º 1ª – 08007 Barcelona
jose.maria.blasco@gmail.com

+34 93 454 89 78

March the 4th, 2024

Abstract
In this article, we present Tutor, a software package implement-

ing (parts of) the Unicode standard in Rexx and ooRexx. Tutor
stands for The Unicode Tools Of Rexx, and is a prototype, exper-
imental, partial, procedural-first, level-one, pure Open Object Rexx,
implementation of the Unicode standard; the first part of the article
is devoted to providing us with an insight into the most basic design
decisions behind the software package.

After a short review of what can be done, today, with Rexx and
Unicode, a detailed discussion of the additions to Classic Rexx that
are needed for Unicode follows. The next section, much shorter, does
the same for (Open) Object Rexx. The following two chapters discuss
necessary modifications to the existing built-in functions, and the new
functions defined by Tutor, respectively.

The article concludes, before the acknowledgements, with a re-
view of the main utilities included with Tutor, including rxu, the
Rexx Preprocessor for Unicode, and rxutry, a derivative of rexxtry
distributed with the 0.5 release, which has been extended to support
Tutor-defined Rexx.

The Rexx tokenizer, which is distributed as part of Tutor, can,
however, be used independently of that software package. It is de-
scribed in an accompanying document.

∗URL of this document: https://www.epbcn.com/pdf/josep-maria-blasco/2024-
03-04-The-Unicode-Tools-Of-Rexx.pdf. Presented to the 35th International Rexx Lan-
guage Symposium, held in Brisbane, Australia and online from the 3rd to the 6th of March,
2024.

1

https://www.epbcn.com/equipo/josep-maria-blasco/
https://www.epbcn.com/
mailto:jose.maria.blasco@gmail.com
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx.pdf

Contents
1 Introduction 5

1.1 The Architecture Review Board 5
1.2 A prototype . 5
1.3 A partial implementation . 5
1.4 An experimental implementation 5
1.5 History of Tutor . 6
1.6 A pure ooRexx implementation 8
1.7 A level one implementation 9
1.8 Other implementations . 9
1.9 The procedural-first approach 10
1.10 A single, universal, string interface 11
1.11 Experimenting with concepts 11
1.12 Structure of this article . 13

2 Using Unicode with Rexx, today 15
2.1 Character encoding . 15
2.2 Unicode literal strings . 15
2.3 Operating with Unicode strings 16
2.4 Unicode labels, and external programs 16
2.5 String identity in Rexx, and its effects on labels 17
2.6 Stream I/O . 18
2.7 Console I/O . 18
2.8 Other environments . 19
2.9 In summary . 19

3 Unicode for Classic Rexx 20
3.1 The compatibility conflict . 20

3.1.1 The need for two types of strings 20
3.1.2 Selectable default string types 21

3.2 Implementing types in a “typeless” language 22
3.3 Changing glasses: The view metaphor 22
3.4 What is a character, anyway? 24

3.4.1 Code points and extended grapheme clusters 24
3.4.2 Abstract and encoded characters 26
3.4.3 Normalization forms and string equivalence 26
3.4.4 Defining the four string types 26
3.4.5 String suffixes . 27
3.4.6 Conversion functions 27
3.4.7 The STRINGTYPE built-in function 28

2

3.5 Defining the default string type 28
3.6 Coercions . 29
3.7 Unicode strings . 30

4 Unicode for (Open) Object Rexx 33
4.1 The four string classes . 33
4.2 The BYTES class . 33
4.3 The CODEPOINTS class . 33
4.4 The GRAPHEMES class . 34
4.5 The TEXT class . 34

5 Modifications to existing built-in functions 35
5.1 String manipulation functions 35

5.1.1 Semantics of string manipulation built-in functions . . 35
5.1.2 Methods and functions definable in terms of LENGTH

and [] . 35
5.1.3 Methods and functions definable in terms of the cor-

responding String method 36
5.1.4 Examples . 36
5.1.5 Exceptions to these rules 37
5.1.6 List of unicode-enabled built-in string manipulation

functions . 38
5.2 Stream functions . 38

5.2.1 Backwards compatibility 38
5.2.2 Unicode-enabled streams 38
5.2.3 Error handling . 40
5.2.4 Specifying the target type 41
5.2.5 Options order . 41
5.2.6 STREAM QUERY extensions 41
5.2.7 Manual encoding and decoding 42
5.2.8 Implementation limits, and some reflections 42
5.2.9 List of unicode-enabled stream built-in functions . . . 43

5.3 Low-level functions . 43
5.3.1 C2X . 43
5.3.2 DATATYPE . 44

6 New built-in functions 45
6.1 Type conversion functions . 45
6.2 Encoding and decoding functions 45

6.2.1 DECODE . 45
6.2.2 Decoding and error handling 46

3

6.2.3 ENCODE . 46
6.2.4 UTF-8 . 47

6.3 Low-level functions . 48
6.3.1 C2U (Character to Unicode) 48
6.3.2 N2P (Name to codePoint) 48
6.3.3 P2N (codePoint to Name) 49
6.3.4 STRINGTYPE . 49

6.4 The UNICODE general function 49
6.4.1 Functional form . 50
6.4.2 Property form . 50

7 Utilities 51
7.1 The setenv utility . 51
7.2 The Rexx preprocessor for Unicode (rxu) 51

7.2.1 Ways to substitute built-in functions. Necessity of a
preprocessor . 52

7.2.2 Ways to substitute built-in functions, part II 53
7.2.3 Subtleties of substitution 53
7.2.4 The RXU command 53

7.3 The Rexx Tokenizer . 54
7.4 The rxutry.rex utility . 55

8 Further work 56

9 Acknowledgements 57

Appendix A Alphabetical list of Unicode-enabled Classic Rexx
built-in functions 58

Appendix B Alphabetical list of new Unicode built-in functions 58

Appendix C Unicode properties implemented by the UNICODE
built-in function 58

Appendix D Resources 60

4

1 Introduction
In this article, we will present and describe a set of programs collectively

known as The Unicode Tools Of Rexx (Tutor). Tutor is a prototype,
partial, experimental, procedural-first, level one, pure Open Object Rexx im-
plementation of the Unicode standard for the Rexx language. The exact
meaning of the highlighted terms will be made clear in the following para-
graphs.

1.1 The Architecture Review Board
Tutor has been written by the author of this article, but its design and

features have been greatly influenced by the debates and discussions held
in the Architecture Review Board (arb) of the Rexx Language Association
(RexxLA); some of the features of Tutor are the direct result of suggestions
made by other members, or expression of a certain consensus between the
members of the board.

I am very thankful for all the inputs, commentaries, suggestions and
general feedback received in the course of these conversations, to which I will
make, in what follows, frequent reference.

1.2 A prototype
Tutor is a prototype, not a finished product. We strongly discourage

using it in production; if you do so, you are doing it at your own risk.
In particular, the package may exhibit incoherent behaviour. For ex-

ample, many of the procedural stream built-in functions (bifs) have been
extended to support Unicode, but the stream classes have not. Operating
on a Unicode stream using stream bifs and stream classes at the same time
may produce unexpected results, result in data corruption, etcetera.

1.3 A partial implementation
Tutor is a partial implementation, because it does not implement the

totality of the Unicode standard, and also because not all of the existing
features of the Rexx language have been revised to add Unicode support.

1.4 An experimental implementation
Tutor is an experimental implementation, because its main purpose is

to provide a collection of proof-of-concept Rexx implementations of several

5

aspects of the Unicode standard, in such a manner that the author, and
hopefully other Rexx users too, can play and experiment, to self-educate
(“tutor”) themselves, by immersing in the Unicode standard and the intrica-
cies of a possible future Unicode-enabled Rexx implementation.

1.5 History of Tutor
Before producing anything remotely related to Tutor, I spent several

months learning Unicode by debating on the arb list, and directly on GitHub,
with Jean Louis Faucher and René Vincent Jansen.1 I am very grateful for
these conversations, from which I extracted ample benefits: Jean Louis’ work
with his Executor is extraordinary, and his knowledge of the Unicode stan-
dard is far wider than mine. Looking at the GitHub documents with the
benefit of hindsight, one can see that many of the design choices taken by
Tutor had already been considered, in nuce or explicitly, as possibilities, in
the debates that were maintained.

Tutor itself started on June 11, 2023, when I distributed “A toy ooRexx
implementation of the General_Category Unicode property”2 for comment
in the arb list.

Five days later, a package then called The Unicode Toys For Rexx was
distributed, as a 0.1 release, with many improvements and additions. In
particular, we were already isolating extended grapheme clusters, and we
implemented three types of string: BYTES, composed of bytes; RUNES, com-
posed of Unicode code points (RUNES has since been renamed to CODEPOINTS),
and TEXT, composed of extended grapheme clusters.3

Development continued at a furious pace. On June 19, version 0.1d was
distributed.4 This version incorporated a tool that has since become essential:
rxu, the Rexx Preprocessor for Unicode. The preprocessor was based on a
version of our Rexx tokenizer that had been modified to optionally support
Unicode. We had started work on the tokenizer, as a separate project, around

1The conversation was chaotic, but, at least for me, very instructive. The interested
reader might want to browse https://github.com/RexxLA/rexx-repository/blob/
master/ARB/standards/work-in-progress/unicode/_draft_notes.md and follow the
links therein.

2See https://github.com/RexxLA/rexx-repository/blob/master/ARB/
standards/work-in-progress/unicode/UnicodeTools/doc/pre-0.1-release-
notes.md.

3See https://github.com/RexxLA/rexx-repository/blob/master/ARB/
standards/work-in-progress/unicode/UnicodeTools/doc/0.1-release-notes.md.

4See https://github.com/RexxLA/rexx-repository/blob/master/ARB/
standards/work-in-progress/unicode/UnicodeTools/doc/0.1d-release-notes.md.

6

https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/_draft_notes.md
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/_draft_notes.md
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/pre-0.1-release-notes.md
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/pre-0.1-release-notes.md
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/pre-0.1-release-notes.md
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/0.1-release-notes.md
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/0.1-release-notes.md
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/0.1d-release-notes.md
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/0.1d-release-notes.md

May 2023. The tokenizer, described in an accompanying document,5 is since
being distributed as part of the Tutor package, but, if no Unicode support
is needed, it can be used separately. This release also featured support for
the new U strings.6

On June 26, version 0.2 was released, featuring Unicode implementations
of LOWER() and UPPER(), an experimental Options DefaultString instruc-
tion to determine the semantics of unsuffixed strings, and another experimen-
tal instruction, Options Conversions (this instruction was later renamed
to Options Coercions), to determine whether and how Rexx should auto-
matically convert between string types.7

I tend to be a magmatic programmer: I produce code at high speed,
but then the documentation layer resents (it tends to be lacking), and some-
times I end up by implementing the same functionality in several different
ways in various parts of the code. On June 30, I announced that a refac-
toring and documentation effort was undergoing. Documentation quickly
improved, while the rhythm of development, unavoidably, dropped. I also
decided, following general remarks in the arb, that the term “Toys” was to
be substituted by “Tools” in the package name.

On August 8, Chip Davis observed that the package could well be re-
named to The Unicode Tools Of Rexx (instead of “...for Rexx”), “giving
you a nice acronym”. Given that the main purpose of the package is to fa-
cilitate playing, experimenting and learning about Rexx and Unicode, this
suggestion looked more than idoneous.

Version 0.3 was released on August 11.8 It featured Unicode support for
the stream bifs, two new bifs, ENCODE() and DECODE(), and new documen-
tation in ooRexxDoc format (we have since migrated to GitHub Markdown).
It also defined an encoder/decoder interface, and added a number of sample
programs.

Six days later, version 0.3b was released. Among other things, it con-
tained four new encodings, kindly contributed by Rony G. Flatscher, and “a
lot of new documentation”.9

Version 0.4, released on September 1, contained “(a) a big upgrade to the
Rexx tokenizer, and (b) a complete rewrite of rxu.rex, the Rexx Preproces-

5See the Symposium presentation titled A tokenizer for Rexx and ooRexx.
6Vid. infra., section 3.7, Unicode strings, on page 30.
7See https://github.com/RexxLA/rexx-repository/blob/master/ARB/

standards/work-in-progress/unicode/UnicodeTools/doc/0.2-release-notes.md.
8See https://github.com/RexxLA/rexx-repository/blob/master/ARB/

standards/work-in-progress/unicode/UnicodeTools/doc/0.3-release-notes.md.
9See https://github.com/RexxLA/rexx-repository/blob/master/ARB/

standards/work-in-progress/unicode/UnicodeTools/doc/0.3b-release-notes.md.

7

https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/0.2-release-notes.md
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/0.2-release-notes.md
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/0.3-release-notes.md
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/0.3-release-notes.md
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/0.3b-release-notes.md
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/0.3b-release-notes.md

sor for Unicode, to take advantage of the improvements in the tokenizer”.10

The “big upgrade” was the addition of what we now call “full tokenizing”.11

Version 0.4b,12 released on October 2, migrated the documentation to
GitHub Markdown format, added some implementation notes, and provided
a sophisticated UTF8() routine, supporting the UTF-8, UTF-8Z, WTF-8, CESU-
8 and MUTF-8 formats. The routine is distributed as part of the Tutor
package, but it can also be used independently.

Around October 20, development was put on hold, because the author
had to attend to other duties.

January and February 2024 have mainly been used to finalize and stabi-
lize version 0.5, and to write this report and another one about the Rexx
tokenizer.

Version 0.5 adds support for the nfd and nfd normalization forms, stip-
ulates that TEXT strings are to be automatically normalized to nfc at cre-
ation time, and adds a new, intermediate type, called GRAPHEMES, composed
of extended grapheme clusters that are not automatically normalized, and
a utility called rxutry.rex, which mimics Rexxrexxtry.rex, but with all
the added Unicode extensions defined by Tutor.

1.6 A pure ooRexx implementation
Tutor does not depend on any external Unicode library, like icu, the

International Components for Unicode, as it is written in pure Open Object
Rexx. Obviously, such an approach has some drawbacks, but it also exhibits
certain advantages.

The main —and obvious— drawback is that every feature, every aspect
of the standard, has to be manually coded, written from scratch, which is
very arduous. Since we do not rely on external libraries, we have to study
the standard thoroughly, and devise the means to implement every fragment
of Unicode by hand, to the last strenuous detail. Clearly, this is much more
laborious than simply adapting an existing framework; moving from one
release of Unicode to another becomes also slower, since it may represent a
considerable amount of work and all the programs have to be revised; and
so on.

At the same time, the very same fact that everything has to be manually
coded can also be pondered as an advantage. Coding everything is. no doubt,

10See https://github.com/RexxLA/rexx-repository/blob/master/ARB/
standards/work-in-progress/unicode/UnicodeTools/doc/0.4-release-notes.md.

11Please refer to the accompanying documentation for the Rexx tokenizer for details.
12See https://github.com/RexxLA/rexx-repository/blob/master/ARB/

standards/work-in-progress/unicode/UnicodeTools/doc/0.4a-release-notes.md.

8

https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/0.4-release-notes.md
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/0.4-release-notes.md
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/0.4a-release-notes.md
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/0.4a-release-notes.md

an exacting task; but, at the same time, it offers an excellent opportunity to
learn, and to understand, in great depth and detail, the more subtle nuances
of the standard. It is our hope that this effort may end by contributing,
all things considered, to the creation of implementations of Unicode-enabled
Rexx of much better quality.

Another, patent, advantage of this code-everything-by-yourself strategy
is that a manually written implementation can be of great help to show the
way for certain, severely memory-constrained, language implementations (for
example, those operating under VM/370).

1.7 A level one implementation
The (admittedly somewhat arbitrary) denomination “level one” appeared

in the arb discussions, and has been imported here. The main idea behind
that name is the following: the implementation of Unicode-enabled Rexx
should not be done in a single step, but in a series of steps; every step should
implement a level of Unicode-enabled Rexx; each level should be contained
in the following level, so that, for example, all the features present in level
one will appear in all the remaining levels, but some features will be exclusive
to level two and to all the levels with numbers greater than two (if any), and
so on.

There seems to be general consensus that all kind of manipulations of
Unicode strings should pertain to level one, while more advanced features,
like the use of Unicode as part of variable or constant symbol names, or
non-ansi numerals in numbers, should be left to levels higher than one.
Sticking to level one would also allow the implementation of Unicode-enabled
Rexx with minimal modifications to the currently existing parsers.

Tutor adheres to this nomenclature, and is a level one implementation
of Unicode-enabled Rexx.

1.8 Other implementations
Tutor is a particular implementation of Unicode for Rexx, and as such

it is based on a set of design decisions which are outlined and justified, in
the manner of a rationale, in this article. Other implementations, like Jean
Louis Faucher’s Executor, a ooRexx derivative that contains a trove of
extensions to ooRexx, including a (also partial) Unicode implementation,13

or Adrian Sutherland’s CRexx project,14 an experimental, Rexx-based low-
level language, which is designed and built to use Unicode from the start, are

13See https://github.com/jlfaucher.
14See https://github.com/adesutherland/CREXX.

9

https://github.com/jlfaucher
https://github.com/adesutherland/CREXX

both based in sets of design decisions which are different from the ones taken
here; it is well-known that a single problem can usually be tackled in many
different ways. In the rest of this article, I will sometimes make reference
to these two implementations, in order to highlight the consequences of the
different choices that each implementation has made.

1.9 The procedural-first approach
Tutor chooses a procedural-first approach to the implementation of

Unicode-enabled Rexx. This means that its priority goal is to produce a
(subset of) Unicode-enabled Classic Rexx — not Unicode-enabled ooRexx.

Since Tutor is a pure ooRexx implementation, the development of this
procedural Unicode-enabled version of Rexx will, unavoidably, require the
creation of a series of object-oriented tools, like, for examples, new classes,
or a rewrite of the current built-in methods. These new tools will serve as
the basis for a possible Unicode-enabled version of ooRexx, and all care
will be taken so that the object-oriented part of our development is coherent
and harmonious with the Classic Rexx part. These extensions of ooRexx,
however, are not an objective by themselves, but only a necessary conse-
quence of the main goal of Tutor, that is, extending Classic Rexx so that
it supports Unicode.

The implementation of Unicode versions of the built-in functions (bifs),
to take an example, will have priority over the development of new versions of
the built-in methods (bims): for instance, the current version implements a
series of enhancements to many of the stream bifs, like CharIn(), Chars(),
LineIn(), Lines() or Stream(), but no modification to the built-in stream
classes.

The rationale for this approach is the following: if we do not first think
about the procedural dialects of Rexx, like Regina or BRexx, and concen-
trate instead only on producing an Unicode-enabled ooRexx derivative, it
is unclear how easy it will later be, or whether it will even be possible, to
comfortably backport our new developments to Classic Rexx. Historically,
Rexx was first procedural only, and only later it acquired object-oriented
extensions; our impression is that, to properly support Unicode “in the Rexx
way”, we will have to repeat, in this sense, the history of Rexx.

Let us consider, as an example, Jean Louis Faucher’s excellent Executor
experiment. It follows a purely object-oriented approach, since it extends
ooRexx by defining a new, Unicode-oriented class, called .RexxText, while
maintaining the .String class as an ordered, byte-oriented, collection of
characters. Executor does not tell us (it doesn’t even attempt to, since, as
far as I understand them, the goals of Executor are very different from ours)

10

how a Classic Rexx interpreter like Regina could be modified to support
Unicode. Adrian Sutherland’s CRexx, on the other hand, is procedural, not
object-oriented, but it is maybe too low-level, and too independent of Classic
Rexx, to give us many ideas about how to modify Regina for Unicode;
besides, being designed from scratch with Unicode support, it does not have
to tackle the problems we are confronted with, since it avoids them by its
very same design.

1.10 A single, universal, string interface
As we will see, we will need to define several new types of strings. All

these string types will present a uniform and similar interface, as they will
be usable in exactly the same way: all the Classic Rexx built-in functions
(bifs) will work, completely unaltered (when this makes sense!), with all the
new string types. Thus, the experienced Rexx programmer will not have to
learn a new set of bifs specific to every new string type; to the contrary, she
will be able to immediately leverage her experience with Classic Rexx bifs
to create new, Unicode-enabled programs.

The main reason behind this design decision is to make the life of pro-
grammers more comfortable. But we will also see later that, at the same time,
the task of building an experimental implementation of the whole hierarchy
of string types is greatly simplified by following this unified approach.15

1.11 Experimenting with concepts
One of the main goals of Tutor is to create a toolbox that is as useful as

possible to experiment with language concepts — in addition to experimenting
with language features.

Let us try to clarify, with a very simple example, the meaning we are
trying to convey. As we will see below in detail,16 Tutor defines four types
of strings: strings made of bytes (equivalent to the current, Classic Rexx,
strings); strings made of Unicode code points; and two types of strings made
of extended grapheme clusters, one of them automatically normalized to the
nfc Unicode normalization form. We will refer to these four string types
by using the names BYTES, CODEPOINTS, GRAPHEMES and TEXT, respectively.
Similarly, we will define four conversion functions, with the same denomina-
tions, to transform strings of one type into another.

15Most probably, a production implementation should be fine-tuned for efficiency, and
then some of these simplifications would vanish.

16See the section titled What is a character, anyway?, on page 24.

11

There has been some discussion about whether defining such new names
and functions is a good design decision or not. A number of people (most
notably, Rony Flatscher) argued that it might be better to create a single
new function, let us call it STRING for the sake of the argument, and then
implement the conversion functions as options of that function. For example,
to convert a variable var to the BYTES type, one would write

STRING(var, "BYTES")

instead of

BYTES(var).

This would have the advantage of helping to keep the language small, and
additionally it would minimize the pollution of the function name space —
two valuable and desirable objectives.

Our way of looking at this question, though, is a different one: we think
that Tutor should, at the present moment, include all these names, but, at
the same time, we are also currently agnostic about whether a final imple-
mentation of Unicode-enabled Rexx should include these names or not.

To justify our standpoint, we will argue as follows. One of the goals of
Tutor is to serve as a playground for new concepts,17 so that these concepts
are socialized in the diverse Rexx groups, and also to provide a common
vocabulary, so that discussions about these concepts can be held, and, even-
tually, pertinent decisions can be taken regarding the entities designated by
these same concepts.

If one looks at Tutor from this point of view, BYTES(var) is much
clearer than STRING(var, "BYTES"). The relevant concept, BYTES, appears
in a prominent way, almost alone; functional notation intuitively indicates
that var is to be of type BYTES, or will be converted to BYTES, or something
similar. The construction STRING(var, "BYTES"), on the other hand, has
STRING, not BYTES, in the most visible first position, so that the fact that
var is, or will be, transformed into a BYTES string is somewhat obscured.
STRING(var, "BYTES") effectively buries and hides the name —BYTES— in-
side a string parameter, which is in turn an option, and this makes the for-
mulation of certain statements, certain assertions about the concept, more
complicated, when not directly impossible: it effectively ends up by reducing
our expressive power.

Once the conceptual debate is over, however; once there has been an
agreement on the final, desirable, features of Unicode-enabled Rexx, it can

17Playground: that is one of the reasons why the first releases of Tutor were called
The Unicode Toys for Rexx.

12

and it will have to be decided which of the new names have to be kept, and
which ones should better be displaced, to be an option of a more general bif.
But while the conversation is ongoing, it seems more practical that the con-
cepts at stake can be named using simple, straightforward, first-class, labels
and denominations. The proliferation of new names, functions, methods,
etcetera, should, therefore, be construed as a methodic means to facilitate
conceptual debate —as a temporary epistemic and sociological (group) aid,
if you want—, and not as a set of formalized, concrete proposals to extend
the language.

1.12 Structure of this article
Section 1, Introduction, on page 5, presents the main design decisions

that are behind Tutor, details its origins, evolution and history, and gives
justifications for some of its philosophical stances.

Section 2, Using Unicode with Rexx, today, on page 15, describes what
can be done, today, with Unicode, using two of the most used interpreters,
under Windows and Linux. As we will see, Unicode can be used, with some
precautions, but lack of explicit support may make many of the operations
very onerous.

Section 3, Unicode for Classic Rexx, on page 20, studies the most basic
aspects of a possible extension of Classic Rexx to support Unicode. For
compatibility reasons, supporting at least two types of strings appears as an
absolute necessity, and the creation of new metaphors to accommodate the
presence of different string types in what has traditionally been presented as
an essentially typeless language (“everything is a string”) is explored. Tutor
ends up by introducing not two, but four string types; this is amply justi-
fied. We also introduce a new, low-level, kind of string, the Unicode string,
comparable to hexadecimal and binary strings. An experimental mechanism
is defined to select the default string type (that is, the type of an unsuffixed
string), and another mechanism to determine whether and how automatic
type conversions are performed is presented.

Section 4, Unicode for (Open) Object Rexx, on page 33, presents the
modifications to the object-oriented part of Rexx defined by Tutor. In ac-
cordance with the procedural-first approach taken by Tutor, this section is
relatively small. It limits itself to introducing the four string classes, namely
Bytes, Codepoint, Graphemes and Text, and to show some examples of their
use.

Section 5, Modifications to existing built-in functions, on page 35, is de-
voted to studying the modifications to existing (Classic) Rexx built-in func-
tions that are necessary to implement Unicode. We divide our work, in turn,

13

between the string manipulation functions, the stream functions, and some
low-level functions.

Section 6, New built-in functions, on page 45, examines the new set of
built-in functions defined and implemented by Tutor.

Section 7, Utilities, on page 51, presents a small set of utilities that are
essential to the use of Tutor: setenv, to prepare the environment to run
Tutor; rxu, the Rexx preprocessor for Unicode, which allows to run Tu-
tor-extended Rexx programs as if they were standard Rexx; the Rexx
tokenizer, which is described in detail in an accompanying document, an can
be used independently of Tutor; and rxutry.rex, a novelty that comes
with release 0.5, which has a role comparable to the classical rexxtry pro-
gram, but it allows all the language extensions defined by Tutor.

Section 9 on page 57 contain the Acknowledgements.
The appendices, starting on page 58, provide some more or less tedious

listings which the reader may, nevertheless, find necessary for a thorough
comprehension of the article as a whole.

14

2 Using Unicode with Rexx, today
Neither ooRexx nor Regina implement Unicode;18 however, we can

still use and partially manipulate Unicode strings, getting in effect a very
limited form of Unicode usage. In this section, we will review many of the
possible uses of Unicode in actual Rexx programs.

We will restrict ourselves to two implementations of Rexx, namely ooRexx
and Regina Rexx (“Regina”), and to two operating systems, Windows
and Linux.

2.1 Character encoding
Both ooRexx and Regina use a subset of ascii as the alphabet of

Rexx. To be able to write Unicode literals in our source programs, we will
need an editor that supports the utf-8 encoding, which is a strict superset
of ascii— and therefore of the alphabet of Rexx.

2.2 Unicode literal strings
Once we are using the utf-8 encoding, we will be able to effortlessly

create Unicode literal strings:

croissant = "������"

Additionally, if, for whatever reason, we need to use a Unicode codepoint not
directly supported by our editor, but we know its utf-8 encoding instead, we
can resort to that encoding to use an hexadecimal string for that particular
codepoint:

Say croissant == "F0 9F A5 90"X /* 1 */

Indeed, in Tutor we will also be able to use a new, specialized string
type, the Unicode string, similar to hexadecimal and binary strings, to de-
note Unicode characters by code point, name, label or alias. This is a much
more convenient way to denote strings with Unicode content, since it is in-
dependent of the source file encoding, while hexadecimal notation is not.19

See the section titled Unicode strings on page 30 for more details.

Say croissant == "1F950"U /* 1 */
Say croissant == "(Croissant)"U /* 1 */

18Beyond some anecdotal RexxUtil functions, SysFromUnicode and SysToUnicode,
which, additionally, under ooRexx, are Windows-only (and, therefore, non portable).

19For example, if the source program file was encoded using utf-16, the hexadecimal
representation of the croissant emoji would be "D83E DD50"X instead of "F0 9F A5 90"X.

15

2.3 Operating with Unicode strings
utf-8 encoded strings are normal string values, which can be manipu-

lated using the usual Rexx bifs and operators:

croissants = Copies(croissant,2)
coffee = "������"
breakfast = coffee || croissants

Some of these operations will get the desired results,

Say Copies("�������", 2) /* �������������� */

while others will not:

Say Length("������������������") /* 12 (instead of 3) */

2.4 Unicode labels, and external programs
We can use Unicode strings as labels, for internal calls, as targets of

Signal instructions, or for any other purpose, like tracing, with absolute
normality:

/* Internal calls to string labels need parentheses */
Call ("��") /* Follow the trail */
...

"��":
...

"�����": /* Do something */
...
Signal "�����"

You can also use Unicode strings as class or method names, etc.
Additionally, since file names can also be Unicode strings, we can call

external programs written in Rexx, and other commands, with Unicode file
names:

/* Call "���.rex" */
Call "���" /* Fire the AI assistant */

/* Invoke a command called "����������������.exe" (Windows) */
Address Command "����������������"

16

2.5 String identity in Rexx, and its effects on labels
In Rexx, character, hexadecimal and binary strings are all different no-

tations for the same type of strings. The ansi standard,20 for example,
clearly states that “String supplies the source recognized as String to the top
syntax level as a STRING token” (6.2.1.2), and then adds “Binary_string
supplies the converted binary string to the top syntax level as a STRING to-
ken,” (Ibid.), and, similarly, “Hex_string supplies the converted hexadecimal
string to the top syntax level as a STRING token” (Ibid).

This means that, according to the standard, and assuming an utf-8
encoding,21 the “top syntax level” sees the same string regardless of whether
the source program contains "a", "61"X or "0110 0001"B.

Say "a" == "61"X /* 1 */
Say "a" == "0110 0001"B /* 1 */

Labels, as it is well known, can be symbols (which includes variable sym-
bols, constant symbols — and numbers22)... or strings. When a label is a
string, the above criteria for string equivalence also applies. Assume, for
example, that you have a label "a":

"a": ... /* Do something */

You can then use that label (with a function call, a Call or Signal instruc-
tion, etc.) by referring to it as "61"X, or as "0110 0001"B:

Call ("61"X) /* Identical to: Call ("a") */
Signal "0110 0001"B /* Identical to: Signal "a" */

Regina does not allow the Call (<expression>) instruction format,
and therefore all string calls are automatically calls to an external function.
On the other hand, ooRexx does not bypass internal labels when the above
instruction format is used (Rick McGuire brought this subtle detail to my
attention).

What is valid for the label "a" is also valid for all other Unicode charac-
ters. Fix again a utf-8 encoding, and assume that we have a label "�����":

"�����": /* Do something */

20See https://github.com/RexxLA/rexx-repository/blob/master/ARB/
standards/historic/j18pub.pdf.

21Indeed, ansi is sufficient for the following example.
22This is not so well known. Open Objet Rexx honors this rare variation, but not

Regina.

17

https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/historic/j18pub.pdf
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/historic/j18pub.pdf

Then, since the utf-8 encoding of "�����" is "D8 3C DF A8"X, we will be able
to Call or Signal this label using

Call ("D8 3C DF A8"X) /* Identical to: Call ("�����")*/
/* The following is identical to: Signal "�����": */
Signal "1101 1000 0011 1100 1101 1111 1010 1000"B

Some readers may find this behaviour of the interpreters strange, or sur-
prising. Let us stress that these are not proposals made by Tutor, but mere
descriptions of the behaviour of current Rexx implementations. Regina and
ooRexx actually work as described in this section, including with Unicode
—e.g., emoji— strings.23

2.6 Stream I/O
Since utf-8 is a strict superset of ascii, utf-8 encoded Unicode strings

can be read and written without problems.

Call LineOut dinner, "��������������������������������"

We can even use utf-8 strings as file names: the following code fragment

Call LineOut "��������������������", "Hume's swans"

will write a line containing "Hume's swans" to a file called "��������������������".

Be careful with file names containing emojis: Dropbox will not synchronize
them, since it only allows Unicode characters from the Basic Multilingual
Plane in file names.

2.7 Console I/O
The Linux terminal will happily work with Unicode, if the right locale

is selected; it is also possible, if a little more tricky, to activate Unicode by
default in the Windows terminal.

This activation is somewhat convoluted. Under Windows 11 23H2, for exam-
ple, one has to follow the path Settings → Time and language → Language
and region → Administrative language settings → Change system
locale, making sure that the Beta: Use Unicode UTF-8 for worldwide
language support checkbox is selected, and then reboot. Additionally, a
TrueType font that supports the Unicode subset being used should be se-
lected for the Terminal application.24

23With the caveat about calculated Call instructions under Regina mentioned above.
24Lucida Console works for us. See https://stackoverflow.com/questions/

57131654/using-utf-8-encoding-chcp-65001-in-command-prompt-windows-
powershell-window for details.

18

https://stackoverflow.com/questions/57131654/using-utf-8-encoding-chcp-65001-in-command-prompt-windows-powershell-window
https://stackoverflow.com/questions/57131654/using-utf-8-encoding-chcp-65001-in-command-prompt-windows-powershell-window
https://stackoverflow.com/questions/57131654/using-utf-8-encoding-chcp-65001-in-command-prompt-windows-powershell-window

2.8 Other environments
Rexx cgi scripts written using the utf-8 encoding can easily create

html5 web pages (html5 uses the utf-8 character encoding by default),
or be used to process the contents of html5 forms.25

2.9 In summary
To summarize: while we can certainly use Unicode in programs written

in the Rexx language today, given that the current implementations do not
offer explicit support for Unicode, our experience will per force be somewhat
limited (when not very limited). Since many of the built-in functions will not
work as intended, programmers will have to implement by themselves many
of the most basic operations (for example, upper- and lowercasing, or accent
removal), in case they need them. This level of (implicit) Unicode support,
though, however lacking it is, should be, at the same time, the conceptual
core around which Rexx support for Unicode is built. What works today
has to continue to work tomorrow — for compatibility. And this signals a
certain path that implementations of Unicode for Rexx will have to follow,
if they don’t want to break compatibility with existing programs.

25See the web of my institution, https://www.epbcn.com/, for a working example: it
is a quite complex web, entirely built using Rexx cgi programs.

19

https://www.epbcn.com/

3 Unicode for Classic Rexx
In this section, we will describe the main design decisions and features

that affect the Classic Rexx aspect of our implementation.
We will center on the most nuclear features of the language: the com-

patibility conflict, from which stems the need to define at least two types
of strings (see section 3.1, The compatibility conflict, on page 20), the pos-
sible difficulties of implementing different string types in a language that is
supposed to be typeless (see section 3.2, ??, on page 22), the “glasses” or
“view” metaphor (see section 3.3, Changing glasses: The view metaphor, on
page 22), the new string types introduced by Tutor (see section 3.4, What
is a character, anyway?, on page 24), how to specify the default semantics
of an unsuffixed string (see section 3.5, Defining the default string type, on
page 28), the different possibilities for automatic type coercions (see section
3.6, Coercions, on page 29), and the definition of the specialized, low-level,
Unicode strings (see section 3.7, Unicode strings, on page 30).

More specialized topics, like stream I/O, will be studied in their own
sections, below.

3.1 The compatibility conflict
3.1.1 The need for two types of strings

Unicode support may be implemented in several, very different, ways.
A possible approach is to leave the language practically untouched, add

some mechanism by which the fact that a string is a Unicode string can
be indicated, and then provide a set of bifs that work with these Unicode
strings. The main drawback with such an approach is that Unicode support
would be second class. If the language has to be left untouched, a literal
string has to be, by default, a Classic Rexx string, i.e., not a Unicode string,
and then Unicode strings will have to be denoted by a special mechanism,
be it, for example, by a new string suffix,

var = "string"U /* "U" strings are Unicode strings */

or by a call to a special bif:

var = Unicode("string")

Both possibilities imply that

var = "string"

20

denotes a non-Unicode, Classic, string, and this is what makes Unicode
second-class.

To avoid Unicode being second class, we could stipulate that
var = "string"

should refer to a Unicode string, but then we would break existing programs,
creating a huge compatibility problem. And we would still need to be able
to indicate that a string is a “Classic” string, i.e., one composed of bytes,
maybe by using a new string prefix:

var = "string"Y /* "Y" strings are bYte strings */

In both cases, we will need to extend Rexx to accept two kinds of strings,
one composed of bytes and another one composed of Unicode characters (the
exact meaning of “Unicode character” will be discussed below).

Rick McGuire suggested the names .Bytes and .Text for two hypothetical
ooRexx classes implementing these two kinds of strings, a denomination
that has since stuck.

3.1.2 Selectable default string types

It would appear that we will be forced to either have Unicode strings as
second-class strings, or to create a serious compatibility problem. A way out
of the conflict is to invent some mechanism to indicate, for every program,
what should be the semantics of a default, unsuffixed string. When we in-
dicate that an unsuffixed string has to be a “classic” string, i.e., a string
composed of bytes, we would be writing a compatibility program, and Uni-
code strings would have to be specified using a special notation (like a string
suffix); when we indicate that an unsuffixed string has to be a Unicode string,
we would be writing a Unicode-enabled program, and byte strings would have
to be specified using a special notation. The actual method used to indicate
the semantics of unsuffixed strings is irrelevant at this point in the discussion:
it could be an Options instruction, a directive, or some other mechanism.

The current release of Tutor implements an experimental form of the
Options instruction to address this need:

Options DefaultString Bytes

indicates that default, unsuffixed strings are classic strings, composed of
bytes, while

Options DefaultString Text

indicates that default, unsuffixed strings are Unicode strings, composed of
Unicode extended grapheme clusters. We will discuss these and other forms
of the Options DefaultString instruction in more detail below.

21

3.2 Implementing types in a “typeless” language
In the new universe of Unicode-enabled Rexx, we will have “pure” com-

patibility programs (e.g., all the old, non-Unicode programs), “pure” Unicode
programs (i.e., programs where all the strings are Unicode strings), and, in-
dependently of the specified and particular semantics of an unsuffixed string,
mixed programs, in which some of the strings will be byte strings and others
will be unicode strings. This represents a challenge for a language which, in
its classic form, presents itself as being somehow typeless (“everything is a
string”).

There has been some discussion, in the arb, about this topic. Some
would argue that Rexx is, indeed, a typed language, only that its typing is
dynamic (i.e., the type of a variable can change with time); the existence of
the DataType bif seems to support this idea. Others would retort that these
different types, in case they existed, should indeed refer to different basic
ways of storing data, and not to a single type (namely String, in ooRexx
parlance).26

A Unicode enabled version of Rexx should support the coexistence of
bytes strings and Unicode strings. Tutor provides a new StringType bif
that returns the type of a string

Say StringType(var1) /* "BYTES" (maybe) */
Say StringType(var2) /* "TEXT" (maybe) */

and several new bifs and string notations that allow to create strings of the
different types; these will be described in detail below.27

3.3 Changing glasses: The view metaphor
Assume for the moment being that the meaning of the expression “Uni-

code character” has been determined,28 and that we have strings consisting
of bytes and strings consisting of Unicode characters. Let us assume, further,
that we count on a promotion bif, called TEXT(), that transforms a (bytes
or Unicode) string into a Unicode string, and a corresponding demotion bif,

26Regardless of implementation details: some implementations of Rexx actually use
internal representations that are not strings. For example, ooRexx has two hidden classes,
Integer and NumberString, that masquerade as String objects. I owe the details of this
information to Rick McGuire.

27See the section titled What is a character, anyway? on page 24.
28It has not: it can either mean a Unicode codepoint, or an extended grapheme cluster;

but we will take care of these differences later. See the section named What is a character,
anyway?, below, on page 24.

22

BYTES(), that transforms a (bytes or Unicode) string into a string composed
of bytes.

/* Assume that hexadecimal strings are BYTES strings */
string = "F0 9F 91 A9"X /* "Woman" emoji (UTF-8) */
Say StringType(string) /* "BYTES" */
Say Length(string) /* 4 (4 bytes) */
string2 = Text(string) /* Promotion */
Say StringType(string2) /* "TEXT" */
Say Length(string2) /* 1 (1 Unicode codepoint) */

What has changed, really, when we execute string2 = Text(string),
what is the difference between string and string2, if any? Indeed, we do
not need to believe that the string itself has changed; what has necessarily
to change is the way we look at it, our view of the string, i.e., the semantics
of the various bifs, when applied to that string.

The mere fact that we can write “the string itself” refers to an outdated
belief, which states that values have canonical internal representations. This
might well be true of the native data types, like bytes, integers or reals, but
it is more than doubtful when applied to objects like strings. Java, for
example, stores strings composed exclusively of Latin-1 characters (i.e., of
codepoints not greater than 'FF'X as an array of bytes, while other strings
are stored as an array of 2-byte utf-16 chars. Contrary to native data types,
which are dependent on the architecture and therefore invariable, there is no
single, unique, fixed or canonical representation of a string: the optimization
for Latin-1 strings, for example, appeared in a certain release of Java. The
interface (or, if we want to be more philosophical, the presentation) of a
string has to remain constant, if one wants to avoid compatibility problems;
to the contrary, its internal structure, its representation, is opaque to the
programmer, and it may vary between releases, as it is implementation-
dependent.

When the program starts, string is a Bytes string; this means that we
are looking at it as if it was a sequence of bytes, and therefore its length
has to be 4 bytes. When we promote the string, by using the TEXT() bif,
we obtain a new variable, called string2. We just have put on new glasses,
which allows us to change our view of the string. Conceptually, the string
might well contain the same binary data as before, or maybe not; what should
now matter to us is that now we are looking at it in a new way: it appears as
composed of Unicode characters, and, consequently, it has to have a length
of 1 (because "F0 9F 91 A9"X is the utf-8 representation of the “Woman”
emoji, "������������������".

A view, therefore, is nothing other than a metaphor for a collection of
bifs (i.e., an interface, a presentation). Wherever it makes sense, the bifs

23

will be always the same, irrespective of the view. Conceptually, they will
effect the same operation; for example, Length will return the number of
elements in the array, and string[1] will return the first element in the
sequence that holds the string, if such an element exists, and the null string
otherwise.

Promoting and demoting changes our view of a string. Not all strings
can be promoted to Unicode, because sometimes a string does not contain
valid utf-8, in which case the operation would not make sense. When one
attempts to promote a string that does not contain valid utf-8, a syntax
error is raised.29 Furthermore, some Unicode types can impose additional
transformations to the promoted string; for example, a type could automati-
cally normalize all strings to a certain Unicode normalization form, say nfc.
In this case, something about the string may have been be altered by the pro-
motion, and then the round-trip promotion-demotion cycle will not amount
to the identity.

3.4 What is a character, anyway?
Rexx is well known for its extensive string manipulation bifs; when we

think of an Unicode-enabled version of Rexx, we are naturally led to think of
a new set of bifs, or, to be more precise, of a set of polymorphic extensions of
the existing bifs, so that we can manipulate Unicode string values as easily
as we manipulate classic string values today. When we write

breakfast = "������������������"
nCroissants = Length(breakfast)

we would expect that nCroissants == 3; similarly, we would expect that
SubStr("��������������������������������",2) == "�����������������������" and Left("��������������������������������",1) == "���������",
and so on.

For some of the bifs, we will expect a behaviour which will not be a direct
extension of the Classic Rexx behaviour, but a new one that is able to
leverage the extended features of Unicode and makes Rexx more general.
For example, one would expect that Lower() and Upper() would implement
the full toLowerCase and toUpperCase Unicode functions, instead of only
uppercasing characters in the ascii range, as in Classic Rexx.

3.4.1 Code points and extended grapheme clusters

When we write “manipulating Unicode string values”, we are obviously
assuming that things like “Unicode string values” exist; as a consequence,

29In the same way that an error is produced when you attempt to add strings which
do not contain numbers.

24

if Unicode string values exist, we should be in a position to clearly define
what is a component of such Unicode string values, that is, what is a Unicode
character. The fact is that Unicode provides two such definitions of character.
The most basic one is the code point (or codepoint), an integer value between
zero and "10FFFF"X;

Not all codepoints represent valid Unicode characters, but this should not
concern us now.

the other definition consists on saying that characters are, indeed, user per-
ceived characters, called extended grapheme clusters (“graphemes”, in short),
which are themselves sequences of code points.

What definition should Rexx use? This is a quite involved question.
Most languages opt for the first, most basic, definition: characters are Uni-
code code points; a set of built-in methods and functions provide then access
to the extended grapheme clusters. Some few languages, on the contrary
(most notably, Apple’s Swift) decide that Unicode characters are extended
grapheme clusters, and then they define a set of built-in methods and func-
tions to provide access to code points.

Managing strings composed of graphemes is more expensive (i.e., it is
generally slower and it may occupy more storage) than managing strings
composed of code points. On the other hand, string manipulations at the
grapheme level feel more “natural” than string manipulations at the code
point level, in the sense that they represent a smaller astonishment factor,
they better match user expectations.

As an example, let us consider "CC 81"X, the utf-8 value that encodes
the Combining acute accent Unicode code point. When concatenated after
a lower case "a", the result shows as an accented letter:

acute = "CC 81"X
aacute = "a" || acute
Say aacute /* "á" */

Aacute is a string composed of two codepoints, even if it shows as a sin-
gle character when printed; on the other hand, aacute contains only one
extended grapheme cluster, the “user perceived character”, namely "á".

If we decide that Rexx strings are code points, we have to accept that
a “single” character, like "á", has an internal substructure (since it is com-
posed of two code points); on the other hand, if we decide that Rexx strings
are graphemes, then we have to accept a new, transmuting semantics for
concatenation, which does not occur in Classic Rexx, since the concatena-
tion of two graphemes, namely "a" and acute, can have as result a single
grapheme.

25

Neither of the two approaches is entirely satisfactory, but the graphemes
approach seems easier to explain to new users: we only have to relax the ex-
pectations about concatenation. In fact, assuming that a letter concatenated
to an accent is an accented letter should appear to us as something natural,
if we were not so tainted by the usual semantics of programming languages.

3.4.2 Abstract and encoded characters

Further complexity stems from the fact that Unicode offers several ways
to express “the same” character.30 To continue with our example, and con-
sidering that "a" == "61"X,

a = "61"X
acute = "CC 81"X
aacute = "61 CC 81"X
Say aacute /* "á" */

but the single Unicode code point with a utf-8 encoding of "C3 A1"X, Latin
small letter a with acute, also prints as "á" — in fact, "C3 A1"X and
"61 CC 81"X are visually indistinguishable. We say that they represent the
same abstract character, even if the respective encodings are different.

3.4.3 Normalization forms and string equivalence

"C3 A1"X and "61 CC 81"X are visually indistinguishable, but are they
really the same character? In Unicode parlance, they are not equal, but
equivalent — according to a certain Unicode Normalization Form, namely
Normalization Form C, nfc. We say that "C3 A1"X and "61 CC 81"X are
nfc-equivalent. If we stipulated that strings composed of graphemes are
to be automatically normalized to the nfc form, then "a" concatenated to
acute would indeed be identical to "C3 A1"X.31

This will be our definition of a default Unicode string: a string composed
of graphemes, i.e., of extended grapheme clusters, automatically normalized
to the nfc form.

3.4.4 Defining the four string types

We will say that a classic Rexx string, i.e., a string composed of bytes,
is a BYTES string, and that a string composed of graphemes with automatic

30See, for example, Figure 2-8. Abstract and Encoded Characters, on page 29 in
The Unicode Standard. Version 15.0 – Core Specification, https://www.unicode.org/
versions/Unicode15.0.0/UnicodeStandard-15.0.pdf.

31Because the nfc normalization of utf-8 "61 CC 81"X is precisely utf-8 "C3 A1"X.

26

https://www.unicode.org/versions/Unicode15.0.0/UnicodeStandard-15.0.pdf
https://www.unicode.org/versions/Unicode15.0.0/UnicodeStandard-15.0.pdf

nfc normalization is a TEXT string. TEXT and BYTES will be the basic string
types of Rexx; TEXT will be used, by default, and in most of the cases, for
instance, when we need to uppercase or lowercase strings, when we need to
single out certain characters or count them, and so on. BYTES, on the other
hand, will be a low-level type; we will use it when we are only interested in
the bytes that compose a string. We will also use BYTES when we will be
manipulating strings encoded in a one-byte-is-one-char encoding.

In some occasions, we will need to manipulate strings composed of graphe-
mes that are not automatically normalized. We will say that these strings
are GRAPHEMES strings.

In some other occasions, we will need to manipulate strings at the code
point level. We will say that a string composed of code points is a CODEPOINTS
string.

Classic Rexx programs will use BYTES strings by default, and new, Unico-
de-enabled programs will use TEXT strings by default. CODEPOINTS and
GRAPHEMES are specialized string types, and, as such, will only be used in
some circumstances.

Tutor built-in functions and operators are defined to work with the four
string types.

The semantics of all the string manipulation bifs can be defined in terms of
LENGTH() and a choice of SUBSTR() or []; this is the approach followed by
Tutor.

This helps to keep the language small, allows the transfer of knowledge,
techniques and code between the different string types, and avoids forcing the
programmer to learn special functions to manipulate unnormalized grapheme
strings or code point strings.

3.4.5 String suffixes

A string with the "Y" suffix, "string"Y, is a BYTES string. A string with
the "P" suffix, "string"P, is a CODEPOINTS string. A string with the "G"
suffix, "string"G, is a GRAPHEMES string. A string with the "T" suffix,
"string"T, is a TEXT string. A string with no suffix will be a BYTES,
CODEPOINTS, GRAPHEMES or TEXT string, depending on the setting specified
by the Options DefaultString instruction.

3.4.6 Conversion functions

Tutor defines a set of new built-in functions to convert between these
four types.

27

• BYTES(string) works with a string of any type, and converts it to a
BYTES string, without altering the contents of the string argument.

• CODEPOINTS(string) takes as its argument a string containing valid
utf-8, and returns a CODEPOINTS string, without altering the contents
of the string argument. When string does not contain valid Unicode
under the current program file encoding,32 a syntax error is raised;
beyond that requirement, string can be of any type.

• GRAPHEMES(string) takes as its argument a string containing valid
utf-8, and returns a GRAPHEMES string, without altering the contents
of the string argument. When string does not contain valid Uni-
code under the current program file encoding, a syntax error is raised;
beyond that requirement, string can be of any type.

• TEXT(string) takes as its argument a string containing valid utf-8,
and returns a TEXT string, normalizing first the string argument to
nfc if necessary. When string does not contain valid Unicode under
the current program file encoding, a syntax error is raised; beyond that
requirement, string can be of any type.

3.4.7 The STRINGTYPE built-in function

STRINGTYPE(string) will return "BYTES", "CODEPOINTS", "GRAPHEMES"
or "TEXT", depending on the type of the string argument.

name = "Łukasiewicz"T
Say StringType(name) /* "TEXT" */

3.5 Defining the default string type
Tutor defines an experimental Options DefaultString instruction to

determine the default string type, i.e., the type of an unsuffixed string:

Options DefaultString <type>

where <type> may be one of BYTES, CODEPOINTS, GRAPHEMES or TEXT, defines
the type (and therefore the semantics) of an unsuffixed string, "string".

Options DefaultString CODEPOINTS
var = "Gödel" /* a CODEPOINTS string */

32In the current implementation, this amounts to utf-8.

28

3.6 Coercions
Should binary operations be allowed, when the operands are of distinct

types? And, if the reply to the previous question is affirmative, what should
be the result of such an operation?

a = "Löb's"T /* A TEXT string */
b = "theorem"Y /* A BYTES string */
c = a b /* Should this be allowed? */

/* What is StringType(c)? */

Tutor implements a special form of the Options instruction so that the
programmer can experiment with all the possibilities. We will order the set
of string types as follows: BYTES < CODEPOINTS < GRAPHEMES < TEXT, i.e.,
we will stipulate that BYTES is the smallest of all types, TEXT is the biggest
one, and so on. With this definition in mind, we will define

Options Coercions <option>

where <option> can be:
• None. When Options Coercions None is in effect, binary operations

between strings of different type are forbidden. A syntax error is raised
if such an operation is attempted.

• Promote. When Options Coercions Promote is in effect, the result
of a binary operations between two strings of different type a, b is of
type Max(StringType(a), StringType(b)), i.e., the operation works
as if the string of smaller type was promoted to the type of the other
string before attempting the operation.

• Demote. When Options Coercions Demote is in effect, the result of
a binary operations between two strings of different type a, b is of type
Min(StringType(a), StringType(b)), i.e., the operation works as if
the string of bigger type was demoted to the type of the other string
before attempting the operation.

• Left. When Options Coercions Left is in effect, the result of a
binary operations between two strings of different type if of the same
type as the left operand. This may imply a promotion or a demotion
of the right operand.

• Right. When Options Coercions Right is in effect, the result of a
binary operations between two strings of different type if of the same
type as the right operand. This may imply a promotion or a demotion
of the left operand.

29

It should be taken into consideration that although demotions always
succeed, promotions may fail (when the promoted string does not contain
valid Unicode).

a = "Löb's"T /* A TEXT string */
b = "theorem"Y /* A BYTES string */
Options Coercions None
c = a b /* Syntax error */
Options Coercions Promote
c = a b /* "Löb's theorem"T */
c = a "FF"X /* Syntax error */
Options Coercions Demote
c = a b /* "Löb's theorem"Y */
Options Coercions Left
c = a b /* "Löb's theorem"T */
Options Coercions Right
c = a b /* "Löb's theorem"Y */

Since our impression is that the “right” setting for Options Coercions
is Promote, this is the default for Tutor.

3.7 Unicode strings
There has been some discussion about whether Rexx should implement

escape sequences in strings, that is, special combinations of characters that
are translated to other characters, like "\r" for the carriage return character,
"0D"X, or "\n" for the line feed character, "0A"X. Many languages implement
these escape sequences, including NetRexx, and it would probably be a good
idea that Rexx implemented them too. The problem here is, once more,
compatibility with existing programs: Classic Rexx, as it is well known,
does not implement escape sequences; if you want special characters, you
have to resort to hexadecimal (or binary) strings.

If we were to implement escape sequences in Rexx strings, we would
need either (a) having two sets of suffixes, as Python does, for escaped and
unescaped strings, or (b) to introduce an asymmetry between unsuffixed
strings in Classic Rexx and the rest of strings (i.e., to preserve compatibility
with old programs, unsuffixed strings could not contain escape sequences in
the compatibility dialect, but these same escape sequences would be allowed
in other types of string).

Since all this is quite controversial and there is no clear consensus about
this problem, Tutor has opted for a conservative approach. It does not allow

30

the use of escape sequences, but it defines a new type of low-level string, the
Unicode string, similar to hexadecimal and binary strings. Unicode strings
are terminated by a "U" character. They can contain blank-separated Uni-
code code points (with or without the "U+" prefix that many languages use),

"41"U == "A"
/* Leading zeros are ignored */
"0041"U == "A"
/* The "U+" prefix is optional */
"U+0041"U == "A"
"1F3B7"U == "�������"
"41 1F3B7"U == "A�������"

and Unicode code point names, alias or labels, written between parentheses,
as defined by the Unicode standard.

"(LATIN CAPITAL LETTER A)"U == "A"
/* Casing and blanks are irrelevant */
"(LatinCapitalLetterA)"U == "A"
/* An alias: */
"(End of line)"U == "0A"X
/* A label: */
"(<control-000A>)" == "0A"X
"(Saxophone)"U == "�������"
/* Blank separator not needed here */
"(Saxophone)(Guitar)"U == "��������������"

U strings are low-level constructions, equivalent to X and B strings, and
therefore they are BYTES strings. You can always promote them, if you so
please, by using the CODEPOINTS(), GRAPHEMES() or the TEXT() built-in
functions.

Please note that U strings are first-class strings: both "(Crab)"U and
"0001F980"U are equivalent to "������������������", and "������������������", in turn, is equivalent, if
the program encoding is utf-16, to "F0 9F A6 80"X.

Let us emphasize once more the fact that the equivalence between "������������������"and
"F0 9F A6 80"X is a current feature of Rexx, defined in the ansi standard
and implemented, for example, by ooRexx and Regina, and not a proposal
or a feature introduced by Tutor.

All of them can be used, interchangeably, as labels and as targets of the
Call and Signal instructions. The following code, for example, is perfectly
legitimate:

31

/* Parentheses are necessary for internal calls */
Call ("F0 9F A6 80"X) /* Calls "������������������" */
Call ("1F980"U) /* Calls also "������������������" */
...

"������������������": /* Do something */
...
Signal "(Crab)"U /* Transfers control to "������������������"*/

32

4 Unicode for (Open) Object Rexx

4.1 The four string classes
The four string types are implemented by four string classes.

4.2 The BYTES class
The Bytes class subclasses the built-in String class. It overloads the op-

erator methods to support coercion selection (using the Options Coercions
instruction), and it reimplements many text manipulation bims in terms of
the Length() and [] methods.

Currently, only the bims that correspond to bifs that have been Unicode-
enabled are implemented.

/* The following method works equally well */
/* with bytes, code points or graphemes */

::Method Reverse
ret = .MutableBuffer~new(, self~length : .String)
Do i = self~length To 1 By -1

ret~append(self[i])
End
Return self~class~new(ret~makeString)

Every subclass of Bytes will only need to redefine these two methods to
get full access to all the usual bims, but now applied to code points or to
extended grapheme clusters, or whatever the definition of ‘character” is for
the new string type.

The Bytes class also extends the DataType() bim to support Unicode,
and defines some few new bims, like C2U() and U2C().

4.3 The CODEPOINTS class
The Codepoints class subclasses Bytes, and redefines the Length() and

[] methods so that they operate on Unicode code points. It implements
some normalization methods,33 and redefines non-strict equality to be nfc
equivalence.

Options Coercions Promote
a = "a"P /* A CODEPOINTS string */

33Currently, nfc and nfd.

33

acute = "(Combining acute accent)"U /* BYTES */
aacute = "á"P /* A CODEPOINTS string */
Say aacute = a || acute /* 1 Equal, but not.. */
Say aacute == a || acute /* 0 ..strictly equal */
Say Length(aacute) /* 1 (one codepoint) */
Say Length(C2X(aacute)) /* 4 ("C3A1" [UTF8]) */

4.4 The GRAPHEMES class
The Graphemes class subclasses Codepoints, and redefines the Length()

and [] methods so that they operate on Unicode extended grapheme clusters.

Options Coercions Promote
/* C2X output prettyprinted for readability */
jose = "Jose"G /* A GRAPHEMES string */
/* "301"U is the combining acute accent */
Say C2X("301"U) /* CC 81 */
Say jose"301"U /* José */
Say C2X(jose"301"U) /* 6A 6F 73 65CC81 */

/* j- o- s- e-´--- */
rev = Reverse(jose"301"U)
Say rev /* ésoJ */
Say C2X(rev) /* 65CC81 73 6F 6A */

/* e-´--- s- o- j- */

4.5 The TEXT class
The Text class subclasses Graphemes and implements automatic nfc

normalization on string creation, including operation results.

Options Coercions Promote
a = "a"T /* A TEXT string */
acute = "(Combining acute accent)"U /* BYTES */
aacute = "á"T /* A TEXT string */
Say aacute = a || acute /* 1 Equal, and.. */
Say aacute == a || acute /* 1 ..strictly equal */

34

5 Modifications to existing built-in functions
This section is devoted to the study of the modifications to the existing

(Classic) Rexx built-in functions that are necessary to implement Unicode.34

We divide out work between the string manipulation functions (p. 35),
the stream I/O functions (p. 38), and some few low-level functions (p. 43).

5.1 String manipulation functions
5.1.1 Semantics of string manipulation built-in functions

Rexx is well-known for its extensive and powerful set of string manipu-
lation functions. Classic Rexx functions operate on strings composed of
bytes. Unicode-enabled string manipulation functions should operate on
Classic Rexx strings, i.e., on BYTES strings, and also on strings of the new
types, that is, CODEPOINTS, GRAPHEMES and TEXT, with the usual semantics,
as defined in the following section.

5.1.2 Methods and functions definable in terms of LENGTH and []

Many of the usual string manipulation built-in functions can be defined
in terms of LENGTH() and [] (or the alternate pair LENGTH() and SUBSTR().
The same is true of the corresponding methods of the String class.

Consider this reimplementation of the REVERSE() built-in method:

::Method Reverse
ret = .MutableBuffer~new(, self~length:.String)
Do i = self~length To 1 By -1

ret~append(self[i])
End
Return self~class~new(ret~makeString)

The method first creates a MutableBuffer to hold the result, for efficiency
reasons; its suggested size is the size, in bytes, of the receiving string. We
then run a counter i from 1 to the length of self. But, what is self~length
(as opposed to self~length:.String)? Well, self~length is the length of
the receiving string in the terms of the string type definition itself, that is,
the number of bytes in self when self is a BYTES string; the number of
code points in self when self is a CODEPOINS string; and the number of

34Please remember that this is a partial implementation of Unicode-enabled Rexx,
and, therefore, our assertions of universality and necessity have to be understood in a
limited sense.

35

extended grapheme clusters in self when self is a GRAPHEMES or a TEXT
string. The loop runs over all the elements of self, which are picked using
the [] method.

As we can see in this example, a simple method consisting of six lines of
code provides us with a general implementation of the REVERSE() method
that will work equally well, and without modification, with BYTES, CODEPOINTS,
GRAPHEMES and TEXT strings — provided that we have written correct imple-
mentations of LENGTH() and [] for each string type.

It is now trivial to define the a polymorphic REVERSE() bif in terms of
this enhanced REVERSE() method.

5.1.3 Methods and functions definable in terms of the correspond-
ing String method

Some few other string manipulation built-in methods and functions can
be defined in terms of the corresponding method of the built-in String class.
For example, the COPIES() method can be redefined as follows:

::Method Copies
Use Strict Arg n
.Validate~nonNegativeWholeNumber("n" , n)
If \self~isA(.Codepoints) Then

Return Bytes(self~copies:.String(n))
Return self~class~new(Copies(self~makeString, n))

The method checks that the number of copies argument, n, is present and is
a non negative whole number. If the receiving object is not a CODEPOINTS
string (which implies that it is not a GRAPHEMES or TEXT string either, since
these classes are superclasses of CODEPOINTS), it has to be a BYTES (or maybe
a String) string, and then we resort to the built-in method of the String
class, after which we coerce the result to BYTES; in all other cases, we
transform the receiving object into a String, we create n copies of that
string, and then we coerce the result into the same string type as the receiving
object.

It is now very easy to define a polymorphic COPIES() bif in terms of this
enhanced COPIES() method.

5.1.4 Examples

Let var be defined as follows:

var = "(Man)(ZWJ)(Woman)(ZWJ)(Girl)(ZWJ)(Boy)"U

36

The value of var is the compound emoji ���������������������������������� ����������� , formed by seven codepoints,
namely:

1. The “Man” emoji,����������������, "1F468"U, utf-8 "F0 9F 91 A8"X, 4 bytes.
2. A Zero Width Joiner, utf-8 "200D"U, "E2 80 8D"X, 3 bytes.
3. The “Woman” emoji,������������������, "1F469"U, utf-8 "F0 9F 91 A9"X, 4 bytes.
4. A Zero Width Joiner.
5. The “Girl” emoji,������������������, "1F467"U, utf-8 "F0 9F 91 A7"X, 4 bytes.
6. A Zero Width Joiner.
7. The “Boy” emoji,����������������, "1F466"U, utf-8 "F0 9F 91 A6"X, 4 bytes.

Now var is a BYTES string (all U strings are BYTES strings), and Length(var) = 25
(because 25 = 3 · (4 + 3) + 4).

Say Length(var) /* 25 (3 * (4 + 3) + 4) */
Say StringType(var) /* BYTES */
Say var[1] /* "F0"X -- Non printable */

What happens if we convert var to a CODEPOINTS string?

var = CodePoints(var) /* Now a CODEPOINTS string */
Say Length(var) /* 7 (7 code points) */
Say StringType(var) /* CODEPOINTS */
Say var[1] /*���������������� The "Man" emoji */

The same bifs produce different results, depending on the string type. Let
us observe the effect of converting var to a TEXT string:

var = Text(var) /* Now a TEXT string */
Say Length(var) /* 1 (1 grapheme cluster) */
Say StringType(var) /* TEXT */

and Say var[1] will print " ���������������������������������� ����������� ".

5.1.5 Exceptions to these rules

Some few bifs are not covered by the cases just presented. For example,
one would expect that LOWER() and UPPER() implemented the toLowercase()
and toUppercase() Unicode functions, instead of operating only on the
"a".."z" and "A".."Z" ranges, as is the case with the Classic Rexx bifs.

37

5.1.6 List of unicode-enabled built-in string manipulation func-
tions

The following Classic Rexx built-in string manipulation functions have
been enhanced to support the Unicode string types in version 0.5 of the Tu-
tor package: CENTER() (CENTRE()), CHANGESTR(), COPIES(), DATATYPE(),
LEFT(), LENGTH(), LOWER(), POS(), REVERSE(), RIGHT(), SUBSTR() and
UPPER(). All of them implement the semantics defined above, except for the
following exceptions:

• LOWER(). In addition to lowercasing the "a".."z" and "A".."Z" ranges,
as the Classic Rexx function does, the Unicode variants of this bif im-
plement the full toLowercase() Unicode function. In practice, this re-
duces to the Simple_Lowercase_Mapping Unicode property, as defined
in UnicodeData.txt, plus two exceptions, listed in SpecialCasing.txt.

• UPPER() In addition to uppercasing the "a".."z" and "A".."Z" ranges,
as the Classic Rexx function does, the Unicode variants of this bif im-
plement the full toUppercase() Unicode function. In practice, this re-
duces to the Simple_Uppercase_Mapping Unicode property, as defined
in UnicodeData.txt, plus a number of exceptions, exceptions, listed in
SpecialCasing.txt.

5.2 Stream functions
Several of the stream built-in functions have been rewritten to implement

a basic level of Unicode support.35

5.2.1 Backwards compatibility

By default, stream operations are byte-oriented, unless you specifically
request otherwise. This allows existing programs to continue running un-
changed.

5.2.2 Unicode-enabled streams

A stream is said to be Unicode-enabled when an ENCODING is specified in
the STREAM OPEN command:

Call Stream fn, "Command", "Open Read ENCODING UTF-8"
35This section contains a re-elaboration of the Stream functions for Unicode markdown

document, version 0.5, https://github.com/RexxLA/rexx-repository/blob/master/
ARB/standards/work-in-progress/unicode/UnicodeTools/doc/stream.md.

38

https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/stream.md
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/stream.md

When an encoding is specified, STREAM() first checks that an encoding
with that name is available in the system. The name is looked for both as an
official name, and as an alias. If no encoding of that name can be found in
the system, a syntax error is raised. If the encoding can be found, the stream
is opened, in the mode set by the options specified in the OPEN command, and
the encoding information gets associated with the stream until the stream
is closed. The official name of the encoding can be retrieved by using the
QUERY ENCODING NAME command:

Say Stream fn, "C", "QUERY ENCODING NAME" /* UTF-8 */

Once a stream is opened with the ENCODING option, stream I/O bifs
recognize that the stream is Unicode-enabled, and change their behaviour
accordingly:

• For input bifs, the contents of the stream is automatically decoded
and converted to Unicode (i.e., to a utf-8 presentation).

• By default, or when the target type is TEXT or GRAPHEMES,36 both
LINEIN() and CHARIN() return strings of the respective type, com-
posed of extended grapheme clusters; additionally, when the target
type is TEXT, input lines and character strings are automatically nor-
malized to the nfc Unicode normalization form. When the target type
is CODEPOINTS, both bifs return CODEPOINT strings, composed of Uni-
code code points.

• When you call CHARIN() and specify the length parameter, the ap-
propriate number of codepoints (or grapheme clusters) are read and
returned.

• Each encoding can specify its own set of end-of-line characters. For
example, the IBM-1047 encoding (a variant of EBCDIC) specifies that
"15"X, the NL character, is to be used as end-of-line. Both LINEIN()
and LINEOUT() honour this requirement, i.e., when reading lines, a line
will be ended by "15"X, and when writing lines, they will be ended by
"15"X too, instead of the usual LF or CRLF combination

• When using Unicode semantics, some operations can become very ex-
pensive to implement. For example, a simple direct-access character
substitution in a file is trivial to implement for ASCII streams, but it
can become prohibitive when using a variable-length encoding. These
operations have been restricted in the current release.

• Similarly, when the Unicode-enabled stream has a string target of
TEXT (the default) or GRAPHEMES, some operations can become pro-

36See section 5.2.4, Specifying the target type, below, on page 41.

39

hibitive too: a TEXT or a GRAPHEMES ”character” is, generally speak-
ing, a grapheme cluster, and a grapheme cluster can have an arbitrary
length. Direct-access character substitutions become too expensive to
implement.

5.2.3 Error handling

When using a Unicode-enabled stream, encoding and decoding errors
can occur. By default, ill-formed characters are replaced by the Unicode
Replacement Character (U+FFFD). You can explicitly request this behaviour
by specifying the REPLACE option in the ENCODING of your stream:

Call Stream fn, "C", "Open Read ENCODING UTF-8 REPLACE"

REPLACE is the default option for error handling. You can also specify
SYNTAX as an error handling option,

Call Stream fn, "C", "Open Read ENCODING UTF-8 SYNTAX"

Finding ill-formed character sequences will raise a syntax error in this case. If
the syntax condition is trapped, you will be able to access the undecoded or
unencoded offending line or character sequence by using the QUERY ENCODING
LASTERROR command:

Call Stream fn, "C", "Open Read ENCODING UTF-8 SYNTAX"
...
Signal On Syntax
...
var = LineIn(filename) /* May raise a Syntax error */
/* Do something with "var" */
...
Syntax:

offendingLine = Stream(fn, "C", "Q ENCODING LASTERROR")
/* Do something with "offendingLine" */
...

If the function causing the error was LINEIN() or CHARIN(), the result of
the QUERY ENCODING LASTERROR command will be the original, undecoded,
line or character sequence, as it appears in the file. If the function causing
the error was LINEOUT() or CHAROUT(), the result of the QUERY ENCODING
LASTERROR command is the string provided as an argument.

40

5.2.4 Specifying the target type

By default, Unicode-enabled streams return strings of type TEXT, com-
posed of grapheme clusters automatically normalized to the nfc Unicode
normalization form. You may prefer to manage Unicode string that are not
automatically normalized; in that case, you should use GRAPHEMES as the
target type. In some other occasions, you may prefer to manage CODEPOINTS
strings. You can specify the target type in the ENCODING section of your
STREAM OPEN command:

Call Stream fn, "C", "Open Read ENCODING UTF-8 TEXT"

When you specify TEXT (the default), LINEIN() and CHARIN() will return
strings are of type TEXT, automatically normalized to nfc. When you specify
GRAPHEMES, both bifs will return strings are of type GRAPHEMES, without any
automatical normalization. When you specify CODEPOINTS, returned strings
will be of type CODEPOINTS.

Note: Some operations that are easy to implement for a CODEPOINTS target
type may become impractical when switching to a GRAPHEMES or a TEXT type.
For example, UTF-32 is a fixed-length encoding, so that with a CODEPOINTS
target type, direct-access character positioning and substitution is trivial to
implement. On the other hand, if the target type is TEXT, these operations
become very difficult to implement.

5.2.5 Options order

You can specify any of TEXT, GRAPHEMES, CODEPOINTS, REPLACE and
SYNTAX in any order, but you can not specify contradictory options. For
example, TEXT SYNTAX is the same as SYNTAX TEXT (and as Syntax text,
since case is ignored), but REPLACE SYNTAX will produce a syntax error.

5.2.6 STREAM QUERY extensions

The QUERY command string of the STREAM() bif has been extended to
support Unicode-enabled streams:

Call Stream fn, "Command",,
"Open Read ENCODING IMB1047 CODEPOINTS SYNTAX"

Say Stream(fn, "Command", "Query Encoding Name")
/* "IBM1047" */
Say Stream(fn, "Command", "Query Encoding Target")

41

/* "CODEPOINTS", the name of the target type */
Say Stream(fn, "Command", "Query Encoding Error")
/* "SYNTAX", the name of the error handling option */
Say Stream(fn, "Command", "Query Encoding LastError")
/* "", the offending line or character sequence */
Say Stream(fn, "Command", "Query Encoding")
/* "IBM1047 CODEPOINTS SYNTAX" */

5.2.7 Manual encoding and decoding

Although the simplicity and ease of use of Unicode-enabled streams is
very convenient, in some cases you may want to resort to manual encoding
and decoding operations. For maximum control, you can use the new bifs,
ENCODE() and DECODE(). Please refer to section 6.2, Encoding and decoding
functions, on page 45, for additional details.

5.2.8 Implementation limits, and some reflections

The usual semantics of the stream bifs can not be directly translated to
the Unicode world without a lot of precautions and limitations. Some of these
limitations are due to the fact that the present implementation is a proto-
type, a proof-of-concept. Some other limitations are of a more serious nature.

• Variable-length encodings. Managing character read/write positions
for variable-length encodings, like UTF-8 and UTF-16, can be prohibitive
to the point of becoming impractical. The same can be said when
the target type is TEXT (a ”character”, in this case, is an [extended]
grapheme cluster, and, in the limit case, an arbitrarily large cluster
could substitute a one-byte, one-letter, ascii grapheme). Operating
systems don’t have primitives to insert/delete bytes in the middle of a
file, and, although this behaviour can certainly be simulated, it can be
so, but at a extremely expensive price. It is highly dubious that such
a functionality should be defined in the language, or implemented.

• In an encoding where the LF ("0A"X) character can be embedded in a
normal character, like UTF-16 or UTF-32, ooRexx line count and line
positioning can not be relied upon. This implementation does not go
to the lengths of actively simulating line count and positioning, and
therefore, it preventively disables such operations.

42

5.2.9 List of unicode-enabled stream built-in functions

The following Classic Rexx built-in string manipulation functions have
been enhanced to support the Unicode string types in version 0.5 of the
Tutor package: CHARIN(), CHAROUT(), CHARS(), LINEIN(), LINEOUT(),
LINES() and STREAM().

5.3 Low-level functions
The two low level built-in functions are C2X() and DATATYPE().

5.3.1 C2X

C2X() is well defined for BYTES strings, but its definition for Unicode
strings has generated a lot of debate. The controversy stems from the belief
that C2X(string) should somehow return “the internal representation” of
string. As mentioned in section 3.3, Changing glasses: The view metaphor,
on page 22, it is doubtful that this concept of internal representations is
indeed well defined for entities like strings. For instance, when Tutor creates
an instance variable of a Unicode string class, it conveniently stores, apart
from several other instance variables, a minimum of two representations of
the string, one in the utf-8 format, and another one in utf-32 format.
What is the “internal representation” of such a string supposed to be, if not
the whole collection of state variables, a collection completely unsuitable for
C2X()?

Now, if the concept of internal representation is not well defined, it be-
comes obvious that we can not base the definition of a built-in function on
such a concept. A possible solution to this problem would be to establish
that C2X() is only defined for BYTES strings, creating an asymmetry between
string types. Another way to avoid getting stuck in what we could call “the
internal representation trap”, is the one taken by Tutor: we extend C2X()
to accept a second, optional, argument that indicates a string encoding:

C2X(string, encoding)

Currently, encoding defaults to "UTF-8".37 This argument does not have any
effect if string is a BYTES string, but when string is a Unicode string, it
determines the encoding of the returned value: "UTF-8", for example, means:
convert the string to utf-8, and then return the hexadecimal representation
of this utf-8 string.

37And only this value and "UTF8" can be specified, to the same effect. Later releases
will allow for a wider range of encodings, including utf-16 and utf-32.

43

The definition of C2X() has been chosen so that it has the following,
desirable, property: conversion functions do not alter the C2X() value of
a string (except for a possible normalization to nfc in the case of TEXT).
This means that, if string is a BYTES string containing well-formed utf-8
normalized to nfc, the following three strict equalities hold:

C2X(string) == C2X(CODEPOINTS(string))
C2X(string) == C2X(GRAPHEMES(string))
C2X(string) == C2X(TEXT(string))

Furthermore, if Options Coercions Promote is in effect (the default), then
the following three strict equalities also hold:

string == CODEPOINTS(string)
string == GRAPHEMES(string)
string == TEXT(string)

5.3.2 DATATYPE

DATATYPE(string, type) accepts a new type, C, for uniCode.
DATATYPE(string,"C") returns 1 when the contents of the string would

be a valid U string if suffixed with a U character.

44

6 New built-in functions
In addition to providing Unicode-enhanced versions of the existing Classic

Rexx built-in functions, Tutor defines a number of new built-in functions.

6.1 Type conversion functions
The type conversion functions are BYTES(), CODEPOINTS(), GRAPHEMES()

and TEXT(). They take an argument of any string type, and convert it to the
type denoted by its name. CODEPOINTS(), GRAPHEMES() and TEXT() expect
an argument that contains well-formed utf-8; otherwise, a syntax error is
raised. TEXT() additionally converts its argument, if necessary, to the nfc
Unicode normalization form. Please refer to section 3.4, What is a character,
anyway?, on page 24, for additional details.

6.2 Encoding and decoding functions
The encoding and decoding functions are DECODE(), ENCODE() and UTF8().

6.2.1 DECODE

DECODE() can be used as an encoding validator when used in the

DECODE(string, encoding)

format. For example, after executing

validString = DECODE(string, "UTF-16")

the value of the validString variable will be 1 if string contains well-
formed UTF-16, and 0 otherwise.

To use DECODE() as a decoder, you have to specify an additional argu-
ment, its format:

DECODE(string, encoding, format)

Format can be UTF8 (or UTF-8), UTF-32 (or UTF32), or a blank-separated
list of the above. If you specify both decoding formats, an array of two items
is returned, in the format (utf-8 representation, utf-32 representation):

/* "string" is encoded using IBM-1047. Decode it and */
/* return its UTF-32 representation. */

string = DECODE(string, "IBM-1047", "UTF-32")

45

When string does not contain valid encoding, the DECODE() call will fail.
You can control the behaviour of DECODE() by specifying a fourth argument,
error_handling. When its value is the null string or NULL (the default), a
null string is returned. When its value is REPLACE, any ill-formed character
will be replaced by the Unicode Replacement Character (U+FFFD). If it has
the value SYNTAX, a syntax condition will be raised when a decoding error is
encountered

6.2.2 Decoding and error handling

A fourth argument to the DECODE bif determines the way in which ill-
formed character sequences are handled:

decoded = DECODE(string, encoding, "UTF-8", "REPLACE")

When the fourth argument is omitted, or is specified as "" or "NULL" (the
default), a null string is returned if any ill-formed sequence is found. When
the fourth argument is "REPLACE", any ill-formed character is replaced with
the Unicode Replacement Character (U+FFFD). When the fourth argument
if "SYNTAX", a syntax error is raised in the event that an ill-formed sequence
is found.

6.2.3 ENCODE

ENCODE(string, encoding) first validates that string contains well-
formed utf-8. Once the string is validated, encoding is attempted using the
specified encoding.

By default, ENCODE returns the encoded string, or a null string if val-
idation or encoding failed. You can influence the behaviour of the function
when an error is encountered by specifying the optional error_handling
argument:

ENCODE(string, encoding, error_handling)

• When error_handling is not specified, is the null string or is NULL
(the default), a null string is returned if an error is encountered.

• When error_handling has the value SYNTAX, a syntax error is raised
if an error is encountered.

/* Encode to IBM-1047, and raise a syntax error if an */
/* error is encountered. */
string = ENCODE(string, "IBM-1047", "SYNTAX")

46

6.2.4 UTF-8

UTF8() is a version of DECODE() specialized in variants of the utf-8
format. UTF8() is packaged and programmed in such a way that it can be
used independently of Tutor.38

By default, UTF8(string) acts as a utf-8 validator. You can also use
the UTF8(string, format), and then format can be one of UTF8 (or UTF-
8), UTF8Z (or UTF-8Z), WTF8 (or WTF-8), CESU8 (or CESU-8), and MUTF8 (or
MUTF-8).39

To use UTF8() as a decoder, you have to specify a target encoding.

UTF8(string, format, target)

This argument accepts a single encoding, or a blank-separated set of tokens.
Each token can have one of the following values: UTF8 (or UTF-8), WTF8

(or WTF-8), UTF32 (or UTF-32), WTF32 (or WTF-32).
The W- forms of the encodings allow lone surrogates, while the U- do not.
Duplicates, when specified, are ignored. If one of the specified encodings

is a W-encoding, the rest of the encodings should also be W-encodings. If
format allows lone surrogates (i.e., if it is not UTF-8 or UTF-8Z), then all the
specified encodings should be W-encodings.

When several targets have been specified, a stem is returned. The stem
will contain a tail for every specified encoding name (uppercased, and without
dashes), and the compound variable value will be the decoded string.

An optional fourth argument, error_handling, determines the behaviour
of the function when a decoding error is encountered.

UTF8(string, format, target, error_handling)

It is an error to specify error_handling without specifying format at the
same time.

• When error_handling is the null string of has the value NULL, a null
string is returned when a decoding error is encountered.

• When error_handling has the value REPLACE, any ill-formed character
will be replaced by the Unicode Replacement Character ("FFFD"U).

• When error_handling has the value SYNTAX, a syntax condition will
be raised when a decoding error is encountered.

38See the classfile utf8.cls in the Tutor distribution.
39Please refer to https://github.com/RexxLA/rexx-repository/blob/master/ARB/

standards/work-in-progress/unicode/UnicodeTools/doc/new-functions.md#utf8
for additional details.

47

https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/new-functions.md#utf8
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/new-functions.md#utf8

6.3 Low-level functions
The low-level functions are C2U(), N2P(), P2N() and STRINGTYPE().

6.3.1 C2U (Character to Unicode)

C2U(string) returns string converted to Unicode code points.
By default, C2U returns a list of blank-separated hexadecimal represen-

tations of the code points. An optional format argument allows to select
different formats for the returned string:

C2U(string, format)

1. When format is the null string or CODES (the default), C2U(name)
returns a list of blank-separated hexadecimal code points. Code points
larger than "FFFF"U will have their leading zeros removed, if any. Code
points smaller than "10000"X will always have four digits (by adding
zeros to the left if necessary).

2. When format is "U+", a list of hexadecimal code points is returned.
Each code point is prefixed with the characters ”U+”.

3. When format is NAMES, each code point is substituted by its corre-
sponding name or label, between parentheses. For example,

C2U("S") == "(LATIN CAPITAL LETTER S)"

and
C2U("0A"X) = "(<control-000A>)

4. When format is �UTF-32, a utf-32 representation of string is re-
turned.

6.3.2 N2P (Name to codePoint)

N2P(name) returns the hexadecimal Unicode code point corresponding to
name, or the null string if name does not correspond to a Unicode code point.

N2P() accepts names, as defined in the second column of UnicodeData.txt
(that is, the Unicode Name [Na] property), like "LATIN CAPITAL LETTER
F" or "BELL"; aliases, as defined in NameAliases.txt, like "LF" or "FORM
FEED", and labels identifying code points that have no names, like "<Control-
0001>" or "<Private Use-E000>".

When specifying a name, case is ignored, as are certain characters: spaces,
medial dashes (except for the "HANGUL JUNGSEONG O-E" codepoint) and un-
derscores that replace dashes. Hence, "BELL", "bell" and "Bell" are all

48

equivalent, as are "LATIN CAPITAL LETTER F", "Latin capital letter F"
and "latin_capital_letter_f".

Returned code points will be normalized, i.e., they will have a minimum
length of four digits, and they will never start with a zero if they have more
than four digits.

6.3.3 P2N (codePoint to Name)

P2N(codepoint) returns the name or label corresponding to the hexadec-
imal Unicode codepoint argument, or the null string if the codepoint has
no name or label.

The argument codepoint is first verified for validity. If it is not a valid
hexadecimal number or it is out-of-range, a null string is returned. If the
codepoint is found to be valid, it is then normalized: if it has less than four
digits, zeros are added to the left, until the codepoint has exactly four digits;
and if the codepoint has more than four digits, leading zeros are removed,
until no more zeros are found or the code point has exactly four characters.

Once the code point has been validated and normalized, it is uppercased,
and the Unicode Character Database is then searched for the Name (Na)
property.

If the code point has a name, that name is returned. If the code point
does not have a name but it has a label, like <control-0010>, then that
label is returned. In all other cases, the null string is returned.

Note. Labels are always enclosed between "<" and ">" signs. This allows
to quickly distinguish them from names.

6.3.4 STRINGTYPE

STRINGTYPE(string) returns BYTES, CODEPOINTS, GRAPHEMES or TEXT,
depending on the string type of string.

You can also use the boolean form of the function, STRINGTYPE(string, type),
where type if one of BYTES, CODEPOINTS, GRAPHEMES or TEXT. The function
will return 1 is the string type of string is the same as the type indicated
by type, and 0 otherwise.

6.4 The UNICODE general function
UNICODE() is the Swiss-army knife of Unicode functions, since it cen-

tralizes a big (and growing) collection of Unicode functions and properties.

49

Please refer the documentation for the UNICODE() built-in function for de-
tails.

6.4.1 Functional form

UNICODE(string, function) implements a series of Unicode-defined func-
tions.40 The particular function is selected by specifying its name as the
case-insensitive function argument.

The following functions are implemented, as of the 0.5 release of Tutor:

• isNFC: returns 1 when string is nfc-normalized.
• isNFD: returns 1 when string is nfd-normalized.
• toNFC: returns string, after normalizing it to nfc if necessary.
• toNFD: returns string, after normalizing it to nfd if necessary.
• toLowercase: applies the full Unicode toLowercase algorithm (no

cldr).
• toUppercase: applies the full Unicode toUppercase algorithm (no

cldr).

6.4.2 Property form

The UNICODE(code, "PROPERTY", name) returns the Unicode property
identified by name applied to the code point code.41 Name can be specified
using the Unicode property name or any of their alias, as defined in the UCD
file PropertyAliases.txt. Code can be a utf-32 codepoint (i.e., a four
byte integer), or an hexadecimal codepoint (with no leading "U+").

Please refer to Appendix C, Unicode properties implemented by the UNICO-
DE built-in function, on page 58, for a comprehensive list of the properties
implemented by the UNICODE(code, "PROPERTY", name) built-in function,
as of the 0.5 release of Tutor.

40See https://github.com/RexxLA/rexx-repository/blob/master/ARB/
standards/work-in-progress/unicode/UnicodeTools/doc/new-functions.md#
unicode-functional-form.

41See https://github.com/RexxLA/rexx-repository/blob/master/ARB/
standards/work-in-progress/unicode/UnicodeTools/doc/new-functions.md#
unicode-property-form.

50

https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/new-functions.md#unicode-functional-form
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/new-functions.md#unicode-functional-form
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/new-functions.md#unicode-functional-form
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/new-functions.md#unicode-property-form
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/new-functions.md#unicode-property-form
https://github.com/RexxLA/rexx-repository/blob/master/ARB/standards/work-in-progress/unicode/UnicodeTools/doc/new-functions.md#unicode-property-form

7 Utilities

7.1 The setenv utility
The setup utility for Tutor is called setenv.bat (or setenv.sh for

Unix-like systems). You should use setenv to set the path environment
variable, and before using other Tutor programs, like rxu, the Rexx pre-
processor for Unicode.

The only exception to this rule is the rxutry utility, which, as a usability
aid, is able to temporarily adjust its path when setenv has not been run.

Assume that you have unzipped the Tutor distribution in the C:
Unicode directory and that your operating system is Windows.
C:\Unicode >setenv
Adding "C:\Unicode" to the PATH environment variable...

C:\Unicode >

If you are running under a Unix-like system, remember to invoke setenv
using the . ./setenv.sh form, or your environment changes will not per-
sist.
user@host:/Unicode$. ./setenv.sh
Setting env
user@host:/Unicode$

7.2 The Rexx preprocessor for Unicode (rxu)
Tutor defines a series of extensions to the Rexx language, and another,

dependent, set of extensions to ooRexx. To be able to experiment with these
extensions, a Rexx Preprocessor for Unicode called RXU has been written.
The purpose of RXU is to offer a Unicode-enhanced Rexx experience that is
as seamless and as simple as possible. A Unicode-enabled Rexx program
(“a RXU program”, for short) is a program written in a language based on
standard (oo)Rexx and enhanced with a set of Unicode specific additions and
modifications.

Rexx (ooRexx (RXU (Tutor)

As an example of additions, RXU programs allow for four new types of
literal strings.42 There is also a set of new built-in functions.43

42See section 3.4, What is a character, anyway?, on page 24, for details.
43See section 6, New built-in functions, on page 45, for details.

51

Modifications become necessary when the behaviour of already existing
mechanisms of Rexx has to be altered. In our case, for instance, we will
expect that RXU programs know how to manage Unicode strings, and thus
bring the rich set of features of Rexx to the Unicode world. But this will
mean that existing bifs will have to operate with new entities (i.e., Unicode
strings) and, of course, they will most probably have to produce new and
different results when processing these new entities.

We are then confronted to the task of enhancing, and in this sense re-
defining, existing bifs. But to redefine bifs in Rexx happens to be quite
difficult.

7.2.1 Ways to substitute built-in functions. Necessity of a pre-
processor

As it is well known, built-in functions are second in the Rexx search order:

Functions are searched in the following sequence: internal rou-
tines, built-in functions, external functions (rexxref, 7.2.1, “Search
Order”).

As a consequence, when one wants to redefine a bif, the only possible
way is to write an internal function with the same name:

If the call or function invocation uses a literal string, then the
search for internal label is bypassed. This bypass mechanism
allows you to extend the capabilities of an existing internal func-
tion, for example, and call it as a built-in function or external
routine under the same name as the existing internal function.
To call the target built-in or external routine from inside your
internal routine, you must use a literal string for the function
name (Ibid.).

If, as we stated above, we want to offer an experience that is “as seamless
and as simple as possible”, the only way to achieve that is to implement
a preprocessor. The alternative would be to define a kind of “epilog” that
would contain all the redefined functions, and ask the programmers to copy
it at the bottom of their programs: a maintenance nightmare, and nothing
that could be called “seamless” or “simple”.

52

7.2.2 Ways to substitute built-in functions, part II

A preprocessor could add such an epilog to RXU programs in an automated
way. But, if we counted on the idea of a (sufficiently powerful) preprocessor,
we could also opt for a different strategy. Instead of writing an internal
routine for each bif that we wanted to modify or enhance, we could substitute
the name of each bif in every bif call, and call a different function instead.
Now, that different function would have a new name, an external function
name. Clashes with existing bif names would disappear, and, with them, the
need to define internal routines. That’s a much neater solution. Indeed, if
working with ooRexx, all the external routines can be grouped in some few
packages, and the task of the preprocessor will practically be reduced, beyond
the substitution of names and the implementation of new string types, to the
trivial addition of a ::Requires directive or a function call to enable the new
external functions.

The RXU preprocessor for Unicode follows this approach. It substitutes
calls to an arbitrary Rexx bif, say F, with calls to !F, i.e., an exclamation
mark, "!", is prepended to the bif name. For example, the preprocessor
would translate Length(var) to !Length(var).

7.2.3 Subtleties of substitution

The basic idea of such a substitution is very easy to explain, but, as
it often happens with basic ideas, its concrete realization is nothing but
trivial. You cannot simply pick every occurence of, say, "LENGTH" and blindly
substitute it with "!LENGTH": that would unintendedly transform method
calls, like var~length, var~!length into for example. Clearly, we do not
want that.

Ok, you could say; let’s reduce ourselves to the case where a bif name
is followed by a left parentheses. But this leaves out CALL statements. And
there are methods that have arguments, anyway.

The RXU Rexx Preprocessor for Unicode handles all these complexities,
and many more, except one: if there is an internal routine with the same
name as a bif, it substitutes names anyway. It should not, but it’s beyond
its power, in the current version. This limitation will be addressed in a future
release.

7.2.4 The RXU command

The preprocessor is implemented by a command written in Open Object
Rexx, rxu.rex .

53

C:\Unicode >rxu
rxu: A Rexx Preprocessor for Unicode

Syntax:
rxu [options] filename [arguments]

Default extension is ".rxu". A ".rex" file with the same name
will be created , replacing an existing one, if any.

Options (case insensitive):

-help, -h : display help for the RXU command
-keep, -k : do not delete the generated .rex file
-nokeep : delete the generated .rex file (the default)
-warnbif : warn when using not-yet-migrated to Unicode BIFs
-nowarnbif : don't warn when using not-yet-migrated -to-Unicode

BIFs (the default)

-C:\Unicode >

The rxu command takes as its argument a filename identifying a .rxu file,
and attempts to translate it to standard .rex code. A .rxu file can contain all
the extensions defined by Tutor; the translated file is a pure ooRexx pro-
gram, but it makes ample use of the Tutor Unicode library, Unicode.cls,
and of other auxiliary files. If the translation phase succeeds, the trans-
lated .rex file is called, and then deleted (unless the -keep option has been
specified). The net effect is that rxu filename interprets (a translation) of
filename.rxu, written in the extended dialect of Rexx defined by Tutor:
the rxu command runs .rxu files, as one would expect, and .rxu files can
be written in Unicode-enabled Rexx, as defined by Tutor.

7.3 The Rexx Tokenizer
To translate .rxu programs to standard ooRexx.rex programs, the

rxu preprocessor uses the Rexx tokenizer. The tokenizer breaks the .rxu
program in its constituent parts (“tokens”), attaching to each part some
semantic information. The preprocessor inspects these tokens and then emits
the new .rex program by transforming them.

For example, unsuffixed literal strings, "string", are substituted by a
parenthesized function call, (!DS("string")). !DS, a routine located in
Unicode.cls, implements the Options DefaultString instruction seman-
tics. Some care has to be taken so that not all unsuffixed strings are blindly
translated; for example, the string "Label" in

"Label": /* Do something */

54

does not have to be translated, since this would generate a syntax error.
The Rexx tokenizer, located in the parser directory, is a work in progress

towards a full abstract syntax tree parser; it is described in detail in a sep-
arate document, A tokenizer for Rexx and ooRexx. The tokenizer can
be used independently of Tutor (unless one makes use of Unicode exten-
sions, of course). It defines a main tokenizer class, and a set of specialized
subclasses implementing parsers for Regina, ooRexx, ansi Rexx, and
Unicode variants thereof.

7.4 The rxutry.rex utility
The 0.5 release of Tutor includes a new utility called rxutry.rex. This

program is a derivative of the standard rexxtry.rex utility, distributed with
ooRexx, and it offers a similar functionality, adapted to Tutor and to RXU,
the Rexx preprocessor for Unicode.

The rxutry utility automatically preprocesses every input line by using
RXU. RXU tokenizes and translates each line to standard ooRexx code, and
then this code is executed by using an Interpret instruction.
C:\Unicode >rxutry
REXX-ooRexx_5.1.0(MT)_64-bit 6.05 6 Jun 2023
����rxutry.rex lets you interactively try Unicode -REXX statements.

Each string is executed when you hit Enter.
Enter 'call tell' for a description of the features.

���� Options DefaultString is Text
���� Options Coercions is Promote

Go on - try a few... Enter 'exit' to end.
say "(Guitar)(Saxophone)"U
��������������

.. rxutry.rex on WindowsNT
jose = "Jose"

.. rxutry.rex on WindowsNT
joseacute = jose"301"U

.. rxutry.rex on WindowsNT
Say Length(joseacute) "'"Reverse(joseacute)"'"
4 'ésoJ'

.. rxutry.rex on WindowsNT
exit

C:\Unicode >

55

8 Further work
The most obvious way to extend and enhance our work is to continue

implementing parts of the standard, and to reformulate existing features of
Rexx, adapting them for Unicode.

As an example of the former we could chose the implementation of the
Unicode collation algorithm: this would allow the assignment of Unicode
semantics to the non-strict sorting comparison operators for the Unicode
types.

Features that should be reformulated include, as a major example, a
revision of the Parse instruction.

There are, however, some other, maybe not so obvious, avenues to im-
prove and extend Tutor. One of them consists in rewriting parts of the
package in pure Classic Rexx; as an example, many of the Unicode proper-
ties could easily be rewritten so that they can be run under Regina.

A sample program, called testgc.rex and located in the classic subdirec-
tory, is distributed with the 0.5 release of Tutor. It is a proof-of-concept
Regina implementation of the (extended) general_category property.

This would allow to experiment with Unicode concepts using implementa-
tions very different from ooRexx: not only Regina, but probably also CMS
or TSO Rexx, and maybe even BRexx for VM/370.

A further step in a similar direction would be to rewrite part of Tutor
in languages like C or C++, in effect creating a growing Unicode library for
Rexx users to experiment with. This would be a welcome initiative, and it
could very quickly produce useful results, but, unfortunately, it is not a path
that I can follow alone, since I am not a decent enough C/C++ programmer.

56

9 Acknowledgements
I want to express my gratitude to all the members of the Architecture

Review Board, for their support and encouragement, and their invaluable
discussions and suggestions.

To Jean Louis Faucher and René Vincent Jansen, for our conversations
in GitHub: these were somewhat chaotic, but, at the same time, very pro-
ductive. And they allowed me to get up to speed in Unicode matters.

To Jean Louis Faucher (again) for his pioneer Executor extension, a real
trove of ideas, and to Adrian Sutherland, for his CRexx effort.

To my colleagues at EPBCN, for bearing with me during my prolonged
Rexx raptures.

To the students of my Psychoanalysis and Logic course, where I also
happen to teach some Rexx, for their interest and unfaltering persistence.

To Silvina Fernández, Mireia Monforte, David Palau and Olga Palomino,
for attending several presentation rehearsals and providing essential feedback.

To Silvina Fernández, for deftly managing our Stream Deck, contributing
to make my presentations much more interesting and agile.

Thanks to all, for your help, support and contributions.

57

Appendices
Appendix A Alphabetical list of Unicode-enabled

Classic Rexx built-in functions
The following bifs have been reimplemented to offer Unicode support,

as of the 0.5 release of Tutor: C2X, CHARIN, CHAROUT, CHARS, CENTER,
CENTRE, CHANGESTR, COPIES, DATATYPE, LEFT, LENGTH, LINEIN, LINEOUT,
LINES, LOWER, POS, REVERSE, RIGHT, STREAM, SUBSTR and UPPER.

Appendix B Alphabetical list of new Unicode
built-in functions

The following new bifs have been defined by Tutor in release 0.5:
BYTES, CODEPOINTS, C2U, DECODE, GRAPHEMES, N2P, P2N, STRINGTYPE, TEXT,
UNICODE and UTF8.

Appendix C Unicode properties implemented
by the UNICODE built-in function

Release 0.5 of Tutor implements the following properties (properties
without an associated comment are boolean):

• Alphabetic.
• Alpha (an alias for Alphabetic).
• Canonical_Combining_Class (an integer in [0..254]).
• Canonical_Decomposition_Mapping (one or two normalized hex code-

points).44

• Case_Ignorable.
• Cased.
• CCC (alias of Canonical_Combining_Class).
• Changes_When_Casefolded.
• Changes_When_Casemapped.
• Changes_When_Lowercased.
44Non-standard property: this corresponds to the Decomposition_Mapping column

(number 6, 1-based, in UnicodeData.txt), when the mapping is not a compatibility map-
ping (i.e., it does not start with a "<" character).

58

• Changes_When_Titlecased.
• Changes_When_Uppercased.
• CI (alias of Case_Ignorable).
• Comp_Ex (alias of Full_Composition_Exclusion).
• CWCF (alias of Changes_When_NFKC_Casefolded).
• CWCM (alias of Changes_When_Casemapped).
• CWL (alias of Changes_When_Lowercased).
• CWT (alias of Changes_When_Titlecased).
• CWU (alias of Changes_When_Uppercased).
• Full_Composition_Exclusion (boolean).
• Lowercase (boolean).
• Lower (alias of Lowercase).
• Math (boolean).
• Na (alias of Name).
• Name (the name or label corresponding to the argument45).
• NFC_Quick_Check (one of Y, N or M).
• NFC_QC (alias of NFC_Quick_Check).
• NFD_Quick_Check (one of Y or N).
• NFD_QC (alias of NFD_Quick_Check).
• NFKC_Quick_Check (one of Y, N or M).
• NKFC_QC (alias of NFKC_Quick_Check).
• NFKD_Quick_Check (one of Y or N).
• NKFD_QC (alias of NFKD_Quick_Check).
• OAlpha (alias of Other_Alphabetic).
• OLower (alias of Other_Lowercase).
• OUpper (alias of Other_Uppercase).
• Other_Alphabetic (boolean).
• Other_Lowercase (boolean).
• Other_Uppercase (boolean).
• SD (alias of Soft_Dotted).
• Simple_Lowercase_Mapping (the lowercase version of the argument,

or the argument itself when the character has no explicit lowercase
mapping46).

• Simple_Uppercase_Mapping (the uppercase version of the argument,
or the argument itself when the character has no explicit uppercase
mapping47).

45This corresponds to the (1-based) column number 2 of UnicodeData.txt. This is a
modified property, since it returns labels when there is no name to return. If you want
only names, discard returned values that start with a "<" character.

46This corresponds to the (1-based) column number 14 of UnicodeData.txt.
47This corresponds to the (1-based) column number 13 of UnicodeData.txt.

59

• slc (alias of Simple_Lowercase_Mapping).
• Soft_Dotted (boolean).
• suc (alias of Simple_Uppercase_Mapping).
• Uppercase (boolean).
• Upper (alias of Uppercase).

Appendix D Resources
• A copy of this article can be downloaded from https://www.epbcn.

com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-
Rexx.pdf.

• The presentation slides can be downloaded from https://www.epbcn.
com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-
Rexx-slides.pdf.

• An accompanying article, titled A Tokenizer for Rexx and ooRexx,
cna be found at https://www.epbcn.com/pdf/josep-maria-blasco/
2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx.pdf; the correspond-
ing slides can be found at https://www.epbcn.com/pdf/josep-maria-
blasco/2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx-slides.pdf.

• This last article contains, as an appendix, a modified scripting.py
file, class RexxLexer fragment, for the LuaLATEX minted package, so
that it supports ooRexx 5.0 and the Tutor-defined Unicode exten-
sions.

60

https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx-slides.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx-slides.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-The-Unicode-Tools-Of-Rexx-slides.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx-slides.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2024-03-04-A-Tokenizer-for-Rexx-and-ooRexx-slides.pdf

	Introduction
	The Architecture Review Board
	A prototype
	A partial implementation
	An experimental implementation
	History of Tutor
	A pure ooRexx implementation
	A level one implementation
	Other implementations
	The procedural-first approach
	A single, universal, string interface
	Experimenting with concepts
	Structure of this article

	Using Unicode with Rexx, today
	Character encoding
	Unicode literal strings
	Operating with Unicode strings
	Unicode labels, and external programs
	String identity in Rexx, and its effects on labels
	Stream I/O
	Console I/O
	Other environments
	In summary

	Unicode for Classic Rexx
	The compatibility conflict
	The need for two types of strings
	Selectable default string types

	Implementing types in a ``typeless'' language
	Changing glasses: The view metaphor
	What is a character, anyway?
	Code points and extended grapheme clusters
	Abstract and encoded characters
	Normalization forms and string equivalence
	Defining the four string types
	String suffixes
	Conversion functions
	The STRINGTYPE built-in function

	Defining the default string type
	Coercions
	Unicode strings

	Unicode for (Open) Object Rexx
	The four string classes
	The BYTES class
	The CODEPOINTS class
	The GRAPHEMES class
	The TEXT class

	Modifications to existing built-in functions
	String manipulation functions
	Semantics of string manipulation built-in functions
	Methods and functions definable in terms of LENGTH and []
	Methods and functions definable in terms of the corresponding String method
	Examples
	Exceptions to these rules
	List of unicode-enabled built-in string manipulation functions

	Stream functions
	Backwards compatibility
	Unicode-enabled streams
	Error handling
	Specifying the target type
	Options order
	STREAM QUERY extensions
	Manual encoding and decoding
	Implementation limits, and some reflections
	List of unicode-enabled stream built-in functions

	Low-level functions
	C2X
	DATATYPE

	New built-in functions
	Type conversion functions
	Encoding and decoding functions
	DECODE
	Decoding and error handling
	ENCODE
	UTF-8

	Low-level functions
	C2U (Character to Unicode)
	N2P (Name to codePoint)
	P2N (codePoint to Name)
	STRINGTYPE

	The UNICODE general function
	Functional form
	Property form

	Utilities
	The setenv utility
	The Rexx preprocessor for Unicode (rxu)
	Ways to substitute built-in functions. Necessity of a preprocessor
	Ways to substitute built-in functions, part II
	Subtleties of substitution
	The RXU command

	The Rexx Tokenizer
	The rxutry.rex utility

	Further work
	Acknowledgements
	Appendix Alphabetical list of Unicode-enabled Classic Rexx built-in functions
	Appendix Alphabetical list of new Unicode built-in functions
	Appendix Unicode properties implemented by the UNICODE built-in function
	Appendix Resources

